Nimmer Special District

SUBMITted to:
the Town of Ridgeland, South Carolina Planning and Zoning Board AND
Town Council
MAY 2024
J - 30596.0000

table Of Contents

table Of Contents i
SECTION 1 1
INTRODUCTION AND DESCRIPTION 1
1.1 PROPERTY OWNERSHIP, LEGAL DESCRIPTION, AND CURRENT USE. 1
1.2 INTENT OF THE NIMMER SPECIAL DISTRICT 1
1.3 PLANNED DEVELOPMENT DISTRICT PROCESS 2
SECTION 2 3
LAND USE MASTER PLAN 3
2.1 CONCEPTUAL LAND USE MASTER PLAN" AND DEVELOPMENT SCHEDULE 3
SECTION 3 4
DEDICATIONS TO THE TOWN PF RIDGELAND 4
3.1 DEDICATION OF RO OS A P DRAINAGE SYSTEMS 4
SECTION 4 5
(a) Development Stan 6
SECTION 5 7
BUILDING SCALE PLANS 7
AQUATIC RESOURCES DELINEATION EXHIB 4
INITIAL TRAFFIC ANALYSIS 5
PRELIMINARY PLAT 6
EXHIBIT A - LEGAL DESCRIPTION / DEEDS / BOUNDAR SURVEYS .. Exhibit A
EXHIBIT B - CONCEPTUAL LAND USE MASTER PLAN Exhibit B

ORDINANCE COMPLIANCE

Special District

This text and the attached exhibits, plans, and associated documents are included to meet the filing requirements of a Special District Consideration within the Town of Ridgeland Zoning/Smart Code.

SECTION 1

INTRODUCTION AND DESCRIPTION

The Nimmer SPECIAL DISTRICT is located west of downtown Ridge off of Tarboro Road and Nimmer Turf Road approximately 2.5 miles west of Interstate 95 (l-95). The site is known as Jasper County Parcel Map numbers 046-00-07-001, 046-00-07-002 (only the portion east of Nimmer Turf Road), 046-00-07-018,046-00-06-120(only the portion south of Nimmer Turf Road), 063-00-01-006, and 063-00-01-007. The main vehicular access points to the property will be via Tarboro Road with a secondary access further north on Tarboro Road and west at Nimmer Turf Road. Boundary for the subject property provided in Exhibit "A."

The total property is approximately four hundred and five acres (408 AC) consisting of approximately thirty-five acres (35 AC) of freshwater wetlands as indicated on the exhibit titled Aquatic Resources Delineation Exhibit as Exhibit " C " to the SPECIAL DISTRICT. The freshwater wetland and other aquatic resources boundaries are vroximate. A US Army Corps of Engineers Jurisdictional Determination establishing the boun wetlands will be in place prior to the submittal of any final development permit pplicatig is to the Town of Ridgeland. Any area that is determined to be either non-jurisdiction or is p mitted for impacts shall be allowed to be developed based on the associated allowed lanu within that Planning Area. Freshwater wetlands on the property are typical of coastal South Carolina. Tb reages are based on a preliminary wetlands assessment performed by Sligh Environment avice in January 2023, then surveyed by Coastal and are suitable for master plan level phning se acreages are likely to differ from the final surveyed wetland jurisdictional determination s verified by the USACE and the state of South Carolina. Therefore, final design plans will incorp rate the verified wetlands information and not those included herein.

1.1 PROPERTY OWNERSHIP, LEGAL DESCRIP SN, AND CURRENT USE

The Nimmer SPECIAL DISTRICT is comprised of five th cts $16-00-07-001,046-00-07-014,046-$ $00-07-018,063-00-01-006$, and 063-00-01-007) a pormon or two additional tracts (046-$00-07-002 \& 046-00-06-120$).

The five tracts are contains 405.195 acres and are currently
by 3N FARM NIMMER FAMILY. ,The property is currently mostly fields used for sod production as well as partly wooded on portions.

Exhibit "A" contains the property description surveys and deeds.

1.2 INTENT OF THE NIMMER SPECIAL DISTRICT

This SPECIAL DISTRICT will be developed with a variety of residential housing types with associated amenities as well as a dedicated site for municipal needs. The variation planned for the residential development will offer residential options with easy access to US Highway 17 and Interstate 95 via Tillman Road (Hwy. 336), the property will have convenient access to the two major north/south transportation corridors in the region.

Please refer to Exhibit "B" - "Conceptual Land Use Master Plan" for location of the various land use areas within property.

Zoning to SPECIAL DISTRICT, as allowed under the Special District, Section 4.5 of the Ridgeland Zoning Ordinance, which states:
"Areas that, by their intrinsic size, function, or configuration, cannot conform to the requirements of any Transect Zone or combination of zones shall be designated as special districts by the Planning Office in the process of preparing an infill plan. Conditions of development for special districts shall be determined in public hearing of the Planning Commission and Town Council and recorded on Table 11."

1.3 PLANNED DEVELOPMENT DISTRICT PROCESS

The following process will be established for submittal and approval of Nimmer SPECIAL DISTRICT.
(1) The review and approval of the "Conceptual Land Use Master Plan" (rezoning) by the Ridgeland Planning Commission, and subsequently the Ridgeland Town Council. The "Conceptual Land Use Master Plan" establishes the framework for development of the propert Xer an extended time frame. Land uses, density, environmental quality, and utilit ervic are described in this document.
(2)

Final yelopn ht Plans consist of: Preliminary and Final Plats for major subdivisions and Prem and Fival Site Plans for Multifamily, Amenity Recreation areas, Industrial and / or Cop ie ial uses.
The Final Devela nen will be submitted for approval to the Town for each portion/phase of the act to be developed. The Final Development Plans will describe specific dev lopments in detail as studies and designs are prepared. Specific development standards fot ividual lot setbacks, buffers, minimum lot area, lot coverage, road desige Td As, building heights and other development standards shall be in accordand with those established in this document or as amended by the Owner and cepted the Town of Ridgeland. Specific subdivisions (final plats), Multi-formily, Ay nity Recreation areas, Industrial and Commercial site plans will be submitte it the own for development approval. Supporting documentation of the apmopria detail is required at each level of approval.

SECTION 2

LAND USE MASTER PLAN

2.1 CONCEPTUAL LAND USE MASTER PLAN" AND DEVELOPMENT SCHEDULE

The Nimmer SPECIAL DISTRICT is anticipated to be constructed in several phases over a period of approximately 5 to 10 years. Development will occur in accordance with the "Conceptual Land Use Master Plan" (Exhibit B) as set forth in this document or as amended in the future. The "Conceptual Land Use Master Plan" and this text, outline the general scope of the development including number of units, development standards, open space, and other issues.

The "Conceptual Land Use Master Plan" is nonspecific regarding the final location of specific land uses, lots, development r, yield ignificantly less density. The goal of the development is to produce a high qualit environy entally sensitive, community. The SPECIAL DISTRICT designation is necessary to d comp date the anticipated mixture of land uses planned for the property while providing enhanc mechanism to promote responsible planning and development of the propert ove ex extended time frame.

The land use areas indicufed Conceptual Land Use Master Plan are not intended to be rigid exact boundary lines r future land use and improvements. The boundaries of the SPECIAL DISTRICT may be mod ied to include adjacent acreage subject to the approval of the Town of Ridgeland by appropriat pe fion/application to the Town to amend the SPECIAL DISTRICT.

Any applicable conservation or agricultur tax bene
hall remain in place until such a time as a particular tract of land is approved for velont permits and/or platted for subdivision.

The "Conceptual Land Use Master Plan" (refer to Exhibit B) residential dwelling units within the Residential planning areas.
wo a maximum of 1,400 which will likely be built in phases over an extended period. Allowed uses within eac and Use area of the SPECIAL DISTRICT are detailed under Section 2.b - Allowed Land Use and Development Standards.

The "Conceptual Land Use Master Plan" and the elements of this text seek to maintain significant areas of open space. The open space and amenities will be owned and maintained by the developer, homeowner's association, or other legally designated entity. Property deeded to a governmental entity becomes the maintenance responsibility of that entity.

The "Conceptual Land Use Master Plan" and associated SPECIAL DISTRICT text includes amendments and/or exceptions to the current Town of Ridgeland Ordinances, as well as introduces land uses that may not exist or have different requirements than those found in the current Town of Ridgeland zoning ordinances. The provisions of the "Conceptual Land Use Master Plan," Exhibits, and Appendices shall apply to development of the Nimmer SPECIAL DISTRICT.

SECTION 3

DEDICATIONS TO THE TOWN OF RIDGELAND

3.1 DEDICATION OF ROADS AND DRAINAGE SYSTEMS

Except for infrastructure and systems that are specifically agreed to be private and privately maintained, the Owner will construct all roads and drainage systems in accordance with Town of Ridgeland and/or other applicable standards. Roads and drainage systems which are accessible by the public may either be dedicated to The Town of Ridgeland or owned and maintained by the community's Property Owners Association (POA) and / or other legally established entity. Should any of the residential communities be planned as gated, the Developer will establish a Homeowners Association (HOA) to own and maintain the roads and drainage systr ithin the gated community.

3.2 DEDICATION EWATR \& SANITARY SEWER SYSTEMS

The proposed water and wher ewstem will be designed and constructed to meet or exceed The Town of Rir sel S ecifications. A future water and sewer agreement between the Owner ana/or a ly and the Town of Ridgeland will dictate the granting of utility easements, construction nd ownership of water supply and wastewater conveyance and other terms related to war and sewer ilities.

SECTION 4

SITE CONDITIONS AND DESIGN CONSIDERATIONS

4.1 STORM WATER MANAGEMENT

Impacts due to stormwater runoff are expected to be minimal. State and local stormwater ordinances shall be complied with for the design and installation of the drainage system for each phase of development. Best Management Practices will be used as appropriate and required to control the impact of stormwater runoff. No significant groundwater recharge areas, water supply watersheds, or protected river corridors exist within the development.

Stormwater collectir for the site will consist primarily of pipes, swales, and ditches; which will outfall to a series in rconnected onsite detention ponds. Both water quality and water quantity will be ddressed in the site development design for each phase. Water quality will be controlled sy allowir solids to settle in the onsite detention ponds before being released from the site. vater antity will be maintained by sizing the outlets from onsite detention ponds in a manner such thr ost-development runoff rates do not exceed the predevelopment runoff rates ap, cable design storms. The interconnected ponds will discharge treated storm uno into adjacent freshwater wetlands and ditches which will convey the runoff to fribut lies of the Great Swamp east and west of the site. Town of Ridgeland, State, and Federd stormwater ordinances will be followed in the design of the stormwater system. Also, as tive area is de loped, a master plan will be developed to accommodate the specific developm th hs for individual phases / tracts.

As part of the development process, \dagger O Owner pr its assignees will implement Best Management Practices (BMPs) for Storm Nater requirements dictate BMPs be implemented to p from development. Use of detention lagoons, ossible, is a practice of treating storm water prior to release to the receiving stream to meet water vality standards defined by local and state regulations.

4.2 WETLANDS

Freshwater wetlands on the property are typical of coastal South Carolina. Based on an estimate performed by Sligh Environmental Consultants, Inc., approximately 9 percent of the property consists of jurisdictional and isolated freshwater wetlands. These wetlands are subject to field verification by SCDHC-OCRM and the U.S. Corps of Engineers (USCOE). At this time no wetland impacts are proposed). Upon verification, a survey of the jurisdictional wetlands will be performed and a request for a Jurisdictional Determination letter from the USCOE will be submitted.

See Aquatic Resources Delineation Exhibit "C"

4.3 UTILITIES

The Nimmer SPECIAL DISTRICT will be served by extensions of the adjacent Town of Ridgeland water distribution system and wastewater collection system. A separate water and sewer agreement will govern the timing and amount of water and sewer capacity town allocated to the SPECIAL DISTRICT from the town of Ridgeland.

Palmetto Electric will provide Electrical Power.
Other utility services will be provided by legally established entities at the discretion of the Owner provided such are in accordance with the franchising ordinances/licenses of the Town of Ridgeland.

4.4 SITE ACCESS AND TRAFFIC

The Nimmer SPECIAL DISTRICT will have two direct accesses to State Rd S-27-22/Tarboro Road as well as potential additional access point to Nimmer Turf Road. The general planned location of access points is shown on the Conceptual Land Use Master. The final route of and access points for all new roads will be determined at the time of final site plan approval.

An initial traffic impact analysis was conducted as part of the SPECIAL DISTRICT. The analysis calculated averad Jaily traffic and peak hour traffic that would be generated by the development of e SA CIAL DISTRICT based on the maximum allowable density detailed in Section 2(d) Le SPEC DISTRICT. The analysis also approximated the distribution of traffic to existing p road

Restrictive Covenants will be a, plied to the pperty. The Developer will create and record the Restrictive Covenants prior to the \quad of Jbdivided property.

(a) Development Standards

Site development within Nimmer SPE
DIS VCT will be controlled by the development standards that are est dishe in Section 5 and Section 6 of this document.

SECTION 5

BUILDING SCALE PLANS

5.1 - INSTRUCTIONS.

5.1.1 Lots and buildings located within Nimmer SPECIAL DISTRICT are governed by this Code and previously approved by the Planning Commission shall be subject to the requirements of this article.
5.1.2 Design plans required under this article require administrative approval by the CRC.
5.1.3 Building and site plans submitted under this article shall show the following, in compliance with the standards described in this article:
A. For preliminary site and building approval:

- \quad Plans and dr Wrigs required by this Code shall be stamped by a South Carolina lic ssed engineer or architect.
B. For final approval, in additie 10 e above:
- Landscape standards.
- \quad Signage standards.
- \quad Special requirements, if any

5.2 PRE-EXISTING CONDITIONS.

5.2.1 Existing buildings and appurtenances that do not conf conf m to ne provisions of this Code may continue in use as they are until a substan al modification is requested, at which time the CRC shall determine the provisionsof this section that shall apply.
5.2.2 The modification of existing buildings is permitted by right if such changes result in greater conformance with the specifications of this Code.
5.2.3 Where buildings exist on adjacent lots, the CRC may require that a proposed building match one or the other of the adjacent setbacks and heights rather than the provisions of this Code.
5.2.4 Any addition to or modification of a building of value that has been designated as such by the Town of Ridgeland Municipal Code, or to a building actually or potentially eligible for inclusion on a State, Local or National Historic Register, shall be subject to approval by the Town of Ridgeland Town Administrator.
5.2.5 The restoration or rehabilitation of an existing building shall not require the provision of (a) parking in addition to that existing nor (b) on-site stormwater retention/detention in addition to that existing. Existing parking requirements that exceed those for this Code may be reduced as provided by Table 6 and Table 7.

5.3 SPECIAL REQUIREMENTS

5.3.1 To the extent that a regulating plan for either a new community plan or an Infill Community Plan designates any of the following special requirements, standards shall be applied as follows:
5.3.2 Source water protection standards:
A. Building scale plans must adhere to the distance (no closer than 100 feet) and contaminants of concerns in relation to existing production wells in the Town of Ridgeland. Source water protection standards are as set forth in Ridgeland Code Chapter 51.

5.4 - CIVIC ZONES

5.4.1 General.
A. Civic Zones are designated on community plans as Civic Space (CS) or
 ding (CB).
B.
5.4.2
5.4.3 Civic Buildings (CB)
A. Civic Buildings st be subject to the requirements of this article. The particulars of th r design shall be determined by warrant.

5.5 - BUILDING DISPOSITION.

A. Newly platted lots shall be
 according to Table 10 f . and Table 11.
B. Building disposition types shall be of shown in Table 5 and Table 10 i .
C. Buildings shall be disposed of in relation to tb aries of their lots according to Table 10 g. , Table 10 h ., and Table 11.
D. One principal building at the frontage, and one outbuilding to the rear of the principal building, may be built on each lot as shown in to le 17C.
E. Lot coverage by building shall not exceed that record in rile 10 f . and Table 11.
F. Facades shall be built parallel to a rectilinear principal frontage line or to the tangent of a curved principal frontage line, and along a minimum percentage of the frontage width at the setback, as specified as frontage buildout on Table 10 g . and Table 11.
G. Setbacks for principal buildings shall be as shown in Table 10 g . and Table 11. In the case of an infill lot, setbacks shall match one of the existing adjacent setbacks. Setbacks may otherwise be adjusted by warrant.
H. Rear setbacks for outbuildings shall be a minimum of 12 feet measured from the centerline of the rear alley or rear lane easement. In the absence of rear alley or rear lane, the rear setback shall be as shown in Table 10 h . and Table 11.
I. To accommodate slopes over ten percent, relief from front setback requirements is available by warrant.

5.6 - BUILDING CONFIGURATION.

A. The private frontage of buildings shall conform to and be allocated in accordance with Table 4 and Table 10 j.
C. All facades shall be glazed with clear glass no less than 15% of the first story.
D. Building heights, stepbacks, and extension lines shall conform to Table 5 and Table 10 j .
E. Stories may not exceed 14 feet in height from finished floor to finished ceiling, except for a first floor commercial function, which shall be a minimum of 11 feet with a maximum of 25 feet. A single floor level exceeding 14 feet, or 25 feet at ground level, shall be counted as two (2) stories. Mezzanines extending beyond 33% of the floor area shall be counted as an additional story.
F. In a parking structure or garage, each above-ground level counts as a single story regardless of its relationship to habitable stories.
G. Height lin dot apply to attics or raised basements, masts, belfries, clock towers nimney ues, water tanks, or elevator bulkheads. Attics shall not exceed 14 fea th heigh
H. The habitone area of ar Yccessory unit within a principal building or an outbuilding shall not exceed 440 feet, excluding the parking area.
I. No portion of the priv efr tar may encroach the sidewalk.

5.7 - BUILDING FUNCTION.

5.7.1 Buildings in each transect zone shat inform to the functions on Table 6, Table 8 and Table 10 I . Functions that onform shall require approval by warrant or variance as specified on Table 8.
5.7.2 Accessory functions of restricted bdging or tricted office shall be permitted within an accessory building. See Table 6 .
5.7.3 Accessory functions of limited lodging armite office shall be permitted within an accessory building. See Table 6.
5.7.4 Structures for overnight habitation prohibited. No strug shall be allowed or permitted (either new construction or rehabilitated) f the purpose of overnight habitation (either on a short term or long-term basis) the Town of Ridgeland other than unattached (non-conjoined) single family residential units on a separately platted lot. Any other type of construction, modifications to existing structure or change in use to provide housing (overnight habitation) is strictly prohibited without special exception being granted by Council; prohibited type of housing includes but are not limited to hotels, boarding houses, half-way houses, nightly or weekly rentals, apartments, duplexes, or multi-family of any kind.

5.8 - PARKING AND DENSITY CALCULATIONS.

5.8.1 General

A. Buildable density on a lot shall be determined by the actual parking provided within the lot as table 10.

5.9 - PARKING LOCATION STANDARDS.

5.9.1 General

A. Parking shall be accessed by rear alleys or rear lanes, when such are available.
B. Open parking areas may be located anywhere within the lot.
C. Garage doors may not be located closer than 20 feet from the right-ofway to accommodate driveway parking without protruding into public space
D. Driveways at frontages shall be no wider than 16 feet in the first layer.

5.10 - LANDSCAPE STANDARDS.

5.10.1 General
A. Landscaping for the creation of streetscapes in the public realm, with street trees, on-lot trees and preserved clusters of trees acting as the form of mitigation for the removal of grand tree resources. Grand trees are defined as M ree $24^{\prime \prime}$ dbh or greater or any live oak or palmetto tree $12^{\prime \prime}$ dbh or ater. Ee mitigation requirement is $1.5^{\prime \prime}$ to 1 ".
street tr es and spacing shall be coordinated and approved by the an Director in consultation with the CRC. Whenever possible the following shoul used: Locally made soil amendments and compost for plant nouris ent, pproved water absorption, and holding capacity; drought theran and or slow growing hardy grasses, native and indigenous plants, shrubs, \S pund covers, and trees appropriate for local conditions; and mulches to minimize evaporation, reduce weed growth, and retard erosion.
C. Non-grand tree reworn are permitted to be removed with CRC approval.
D. Grand tree are subject to moval Ab warrant. ed fo the ratio of lot coverage specified in Table 10 f .
F. Landscape strips of at least 6 feet in width shal le provided between parking isles of either head-in or diagonal parking ad landscape median shall have at least one tree for every 20 linear cet, or portion thereof, and be covered with grass, shrubs, or living ground cover. To minimize water consumption, the use of low-water vegetative ground cover other than turf is encouraged.
G. In lieu of landscape strips, landscape islands can be provided. No more than 6 consecutive parking stalls are permitted without a landscape island of at least 6 feet in width and extending the entire length of the parking stall. A minimum of one tree shall be planted in each landscape island.
H. The first layer may not be paved, with the exception of driveways as specified in Section 5.10.2 and Section 5.10.3. (Table 12 d.)
I. A minimum of two trees shall be planted within the first layer for each 30 feet of frontage line or portion thereof. (Table 12 d .)
J. Trees may be of single or multiple species as shown on Table 3B.
K. Trees shall be naturalistically clustered.
L. Lawn shall be permitted by warrant.

5.11 - SIGNAGE STANDARDS.

5.11.1 General
A. There shall be no signage permitted additional to that specified in this section.
B. The address number, no more than 6 inches measured vertically, shall be attached to the building in proximity to the principal entrance or at a mailbox.
C. Architecturally compatible ground level signs shall not exceed 6 ' in height, 16 ' in length and 2 ' in width, and they shall be authorized by CRC.
D. Signage shall be externally illuminated.
E. All praposed signage shall be reviewed and approved by the CRC.

5.12 - ARCHITECTUR STAN ARDS.
 The following kchitect al standards shall apply to all structures

5.12.1 Walls - Marerlals.
A. Walls shall b ished n wood clapboard (sealed with paint or stain), board and batt, ce yrd ngles, "hardie plank," stucco, or brick. Walls may be finished in brick s approved by the CRC. Walls for single family residential units may be fi shed in vinyl siding provided the material thickness is not less than 0.42 milimeters.
B. Foundation walls, a arplo slll be parged block, smooth finished poured concrete, tabby, stucco, oy rick.
C. Crawl space may be skirte with h with not more than 1.5 " spaces wood boards, or framed wood shall be installed ben ards or wood louvers. Lattice hardware cloth may be placed behind the lattid
D. Garden walls shall be stucco or brick. Gates in
walls shall be wood or iron. Garden walls shall not be perforated th precast elements, but
may accommodate pierced brick.
E. Fences at frontages and in front yards shall be made of smooth cedar, or p.t. wood pickets; spacing between pickets shall not exceed 1.5". All other fences shall be governed by community covenants and restrictions, if applicable.
F. Retaining walls shall be built of stucco, brick, fractured face concrete or tabby.
5.12.2 Walls - Configurations and techniques.
A. Walls may be built of no more than two materials and shall only change material along a horizontal line, i.e. cedar shingles may be combined with wood siding when the material change occurs horizontally, (typical at floor line or a gable end), with the heavier material below the lighter. All the walls of a single building must be built of the same materials in the same configuration. Wood clapboard and shingles shall be horizontal.
B. Siding shall be horizontal, maximum 6 " to the weather.
C. Boards with more than 6 " to the weather shall show a 1 " variation from one board to the next. Shingles shall be maximum 8 " to the weather. Decorative shingles shall not be permitted.
D. Stucco shall be smooth sand- or tabby-finished.
E. Trim shall be minimum grade "B" trim lumber; or vinyl and shall be 3.5 " to 6 " in width at corners and around opening, except at the front door, which may be any size ($3.5^{\prime \prime}$ minimum) or configuration.
F. Garden walls shall be minimum 8" thick and have a horizontal cap. Brick mortar joints shall be struck and no more than $3 / 8^{\prime \prime}$ wide.
H. Walls shall be one color.
I. Colors: Colors for all materials shall be selected from a master list approved

5.12.3 Elements - Materi

A. Chimneys shall Eurnished with stucco or brick. Flues for pot belly stoves shall be metal in an appropriate lintel or jack arch.
B. Piers and arches shall be of stucco, brick, or tabby.
C. Porches, columns, pusts, di dles and balusters shall be made of wood. Porches may be enclosed) ith glass or screens for a maximum of 30% of their length; however glass nclosure rot permitted at frontages. Porch ceilings may be enclosed with sted rood; exposed joists shall be painted.
D. Arcades are not permitted.
E. Stoops shall be made of wood, brick, or concret have brick or stucco cheek walls.
F. Decks shall be located in rear yards only.
G. Awnings shall have a metal structure covered with canvas or synthetic canvas and shall be located in rear yards only.
H. Metal elements shall be unpainted galvanized steel, anodized or ESP aluminum, or marine grade aluminum.
I. Patios and stoops may have horizontal surfaces made of brick, or tabby.
J. The following shall not be permitted: Panelized materials, keystones, quoins, window air conditioning units, above-ground pools (except those of the inflatable variety), antennas, free standing solar panels, signs (on private property), direct vent fireplaces.
5.12.4 Elements - Configurations and techniques.
A. Chimneys shall be a minimum 2:1 proportion in plan and capped to conceal spark arresters. Fireplace enclosures and chimneys shall extend to the ground.
B. Porch piers of masonry construction shall be no less than $12^{\prime} \times 12^{\prime \prime}$.
C. Arches of masonry construction shall be no less than 12 " in depth.
D. Breezeways shall have vertically proportioned openings.
E. Screen porches shall have screens framed in wood installed behind framed railings.
F. Columns (the classical orders), if provided, shall be of the tuscan or doric orders with correct proportions or profiles according to the American Vignola.
G. Posts shall be no less than $6 " \times 6$ ", except at outbuildings. Railings shall have hori al top and bottom rails. Wood top rails shall be eased and bottom shal ave a vertical section. Top and bottom rails shall be centered on . The opening between spindles and balusters shall not exceed
H. Balconies which ntilever shall be structurally supported by brackets.
I. Signs attac to by xings shall be integral to the building, no larger than 18 " in heig and and lit.
J. Awnings shall b rectangular in shape with straight edges.
K. Awnings may have side bot shall not have a bottom soffit panel. Awnings shall not be aid.
L. Spotlights attached to build g walls or reof eaves are only permitted in rear yards and illuminating co shall ng it excess or direct light beyond property line.
M. Wood elements must be painter or stamed with an opaque or semi-solid stain, except walking surfaces which may be leff vtural.

5.12.5 Roofs-Materials.

A. Roofs shall be clad in wood shingles, (corru Afed, 5 V crimp or standing seam) galvanized steel, galvalume or copper. Asphaltic or fiberglass shingles shall be architectural grade and shall be submitted for approval.
B. Gutters and downspouts, when used, shall be made of galvanized steel, copper (not copper-coated), anodized or ESP aluminum.
C. Flashing shall be copper, lead or anodized aluminum.
D. Copper roofs, flashing, gutters, and downspouts shall be allowed to age naturally (not painted or sealed).
5.12.6 Roofs-Configurations and techniques.
A. Principal roofs shall be a symmetrical gable or hip with a slope of $6: 12$ to 10:12.
B. Ancillary roofs (attached to walls at the highest portion pf the principal building) may be shed sloped no less than 2:12. Roofs on towers shall be flat or have a slope of 4:12 to 8:12.
C. Flat roofs, including flat roofs on towers, shall be permitted only when occupiable and accessible from an interior room. Flat roofs shall have a railing or parapet wall no less than 36 " high.
D. Parapets are not permitted
E. Eaves shall be continuous. Eaves which overhang less than 8" shall have a closed soffit. Eaves which overhang more than 16 " shall have exposed rafters. Eaves which overhang between $8^{\prime \prime}$ and $16^{\prime \prime}$ shall have either a closed soffit or exposed rafters. Rafter tails may not exceed 8 " in depth.
F. Dormers shall be accessible, placed a minimum of 3' from side building walls and have gable or shed roofs with a slope to match the principal structure or shed roofs with a slope 3:12. Dormers shall not be excessively larger than windows, i.e. no siding at either side of windows. Dormer eaves and rake trim should be scaled down from primary eaves and rake trim proportions
G.

5.12.7 Opening — A erials.
A. Windows shall Et de of wood (painted), vinyl or aluminum clad and shall be glazed cleai ylass. All trim shall be no less than 3.5". Bay windows shall be nude of umber. Corner trim shall be no less than 4".
B. Doors (includin garage doors) shall be wood or metal. Doors shall be painted or stained.
C. Storefront shall be

D. Shutters shall be wood, PVy painted and meet the width of the window when closed.
E. Security doors and window grilles lo approved.
5.12.8 Openings-Configurations and techniques.
A. Windows rectangular single-, double-, or triple-hy awning, fixed (under 2 sf), or operable casement types, with a say e tovertical proportion. Transoms may be oriented horizontally with anes of vertical proportions. Multiple windows in the same rough opening shall be separated by a $4^{\prime \prime}$ minimum post. In masonry walls the centerline of the window sash shall align with the centerline of the wall.
B. Window muntins shall be true divided light or simulated divided light windows or fixed on the interior and exterior surface and create panels of square or vertical proportion.
C. Bay windows shall have a minimum of 3 sides and shall extend to the floor inside and to the ground outside, if located on the ground floor or, if not, be structurally supported by brackets.
D. Storm windows and screens shall be integral with the window. Screens shall be made of brass, bronze, or black vinyl.
E. Front doors, including the entry door to the porch on side yard houses, shall be located on the frontage line. (Paired doors are not permitted at frontages. Windows in doors must be rectangular and vertically-oriented.)
F. Doors shall be hinged. Doors, except garage doors, shall be constructed of planks or raised panels not flush with applied trim which express the construction technique.
G. Garage doors facing a street frontage shall be a maximum of 16 ' in width. Garage doors facing an alley shall have a light fixture with an incandescent bulb activated by a photocell. Garage doors shall be painted or stained. Storefronts shall be painted a dark gloss color.
H. Shutters shall be sized and shaped to match the openings.
I. Stucco trim articulations shall be subject to approval by the CRC.
J. An accent color, for items such as the front door and shutters, may be used subject to approval from the CRC.

ARTICLE 6. - STANDARDS AND TABLES

TABLE 2. - TRANSECT ZONE DESCRIPTIONS

NIMMER	SPECIAL DISTRICT:
NIMMER SPECIAL DISTRICT	

Nimmer SPECIAL DISTRICT consists of a medium density residential area. Home occupations and accessory buildings are permitted. Medium to large-sized blocks define neighborhood general and are typically not serviced by rear lanes/alleys.

Permitted uses:

By right: Live/work unit, ed \& bakfast (up to 5 rooms), inn (up to 12 rooms), hotel (no room limit), SRO hostel, school do nitory, of ce building, retail building, open-market building, retail building, restaurant, liquor selld est fishment, bus shelter, convention center, conference center, exhibition center, fountarner public art layground, library, live theater, movie theater, museum, outdoor auditorium, parking structy , pusenger terminal, sports stadium, surface parking lot, religious assembly, gasoline, aut/ io ile sf yice, truck maintenance, drive-through facility, rest stop, roadside stand, shopping enter ping mall, childcare center, fire station, elementary school, police station, funeral home, hospital, medical clinic, cemetery, college, high school, trade school, light industrial facility, tru k depot, laborgtory facility, electric substation, warehouse, produce storage, mini-storage.

By warrant:
Civic spaces:
Base residential density: 6 dwelling units per acre ma num
Block size/perimeter: 3,000 feet.
Permitted thoroughfares: See thoroughfare standards for T4 and T5.

Building configuration:

Principal building: 2 stories max.
Outbuilding: 1 story max.

Setbacks:

Principal building:

(G.1) Front setback (principal): 15 ft . min. Garage setback: 20 ft . min.
(G.2) Front setback (secondary): 210 ft . min. Garage setback: 20 ft . min.
(G.3) Side setback: 6 ft . min.
(G.4) Rear setback: 15 ft . min.

Frontage buildout: 0\% minimum.

Outbuilding:

(H.1) Front setback: 40 ft . from rear property line.
(H.2) Side setback: 6 ft . min.
(H.3) Rear setback: 5 ft . min.

Building disposition:

Edgeyard: Permitted.
Sideyard: Permitted.
Rearyard: Permitted.
Courtyard: Permitted.
specialized: Permitted.
Lot width: 20 ft . min. and 80 ft . max.
Lot coverage: 70\%.

BUILDING CONFIGURATION

1. Building height shall be measured in number of Stories, excluding Attics, and raised basements.
2. Stories may not exceed 14 feet in height from finished floor to finished ceiling
3. Height shall be measy to the eave or roof deck as specified on Table

4. The Facades and Ens of Pripripal Buildings shall be distanced from the Lot lines as s
5. Facades shall be built alongy Srincio I Frontage to the minimum specified width in

SETBACKS - OUTBUILDING

1. The Elevations of the Outbuilding shall a cod from
the Lot lines as shown.
PARKING PLACEMENT
2. Uncovered parking spaces may be provided within the first, second, or third Layer as shown in the diagram (see Table 17d).
3. Covered parking shall be provided within the second and third Layer as shown in the diagram (see Table 17d).
4. Trash containers shall be stored within the third Layer.

TABLE 3A. - PUBLIC FRONTAGES - GENERAL

The Public Frontage is the area between the private Lot line and the edge of the vehicular lanes. Dimensions are given in Table 3B.

	PLAN
	LOT ROW RRIVATE FRONTAGE RUBLIC FRONTAGE
a. (RD) For Road: This Frontage has open Swales drained by percolation and a walking Path or Bicycle Trail along one or both sides and Yield parking. The landscaping consists of multiple species arrayed in naturalistic clusters.	
b. (ST) For Street: This Frontage has raised Curbs drained by inlets and Sidewalks separated frop Planters, with parking one sides. The landscaping consists of street trees of a singl or alternd Allee, with the exc tion that re species aligned in a regularly spaced of 40 feet or less are 6 mp om tree requirements.	
c. (DR) For Drive: This Frontage has rg Curbs rained by inlets and a wide Sidewalk or paved Path alon one elated to a Greenway or waterfront. It is separated from the ehicular lanes by individual or continuous Planters. The landscaping alternating species aligned in a regulamy spaced All	
d. (AV) For Avenue: This Frontage has raised Curbs ained by iv ts and wide Sidewalks separated from the vehicula lanes continuous Planter with parking on both sides. The landsc of a single tree species aligned in a regularly spaced Alls	
e. (BV) For Boulevard: This Frontage has Slip Roads on both sides. It consists of raised Curbs drained by inlets and Sidewalks along both sid separated from the vehicular lanes by Planters. The landscaping consists of double rows of a single tree species aligned in a regularly spaced Allee.	

TABLE 3B. - PUBLIC FRONTAGES - SPECIFIC
This table assembles prescriptions and dimensions for the Public Frontage elements - Curbs, walkways, and Planters - relative to specific Thoroughfare types within Transect Zones. Table 3B-a assembles all of the elements for the various street types. Locally appropriate planting species should be filled in to the calibrated Code.

	Frontage Type	Nimmer SPECIAL DISTRICT	
		ST-DR-AV	ST-DR-AV-BV
a. Assembly: The principal variables are the type and dimension of Curbs, walkways, Planters and landscape.		12-18 feet	12-18 feet
	Total Width		
b. Curb: The detailing of the edg ve vehicular		Raised Curb 5-20 feet	Raised Curb 5-20
c. Walkway: The pavement dedicated exclu (vely to pedestrian activity. Type Width		Sidewalk 4-8 feet	Sidewalk 4-8 feet
	Planter: The layer which accommodates street trees and other landscape.	Regular Alternating Continuous Planter 8 feet-12 feet	Regular Single Continuous Planter 8 feet-12 feet
Arrangement Species Planter Type Planter Width			

TABLE 3C. - THOROUGHFARE ASSEMBLIES

THOROUGHFARE DESIGN STANDARDS

A. General requirements: Thoroughfares shall be designed to balance safety, mobility, community goals and the environment. Thoroughfares shall provide appropriate pedestrian and vehicle mobility options, shall provide appropriate locations for utilities and shall be designed to support adjacent future development. Thoroughfares addressed in this section are to have low to moderate vehicular speed (25 mph or less), varying traffic volumes and shall serve a range of land uses. The layout of thoroughfares as to arrangement, character, width, grade, and location may be required to conform to the general plan of the entire tract where completed, to adjoining thoroughfare systems of adjoining properties, to the major thoroughfare plans of the city, and to the topography, natural features, and drainage systems to be provided.
B. Contextual design \& xnsect zones: Thoroughfares shall be designed in context with the urban form, intend uso (motorists, pedestrians, bicyclists, transit users) and desired design speed of the tra ect zon through which the thoroughfares pass. The transect zones shall be utilized wh detern ling the appropriate context sensitive thoroughfare design for thoroughfare ass abli and corresponding land use areas). Several thoroughfare types may be allowed in each transe ane.
C. Emergency/service vehicly acess and Building Code and Fire Code compliance: Emergency and service vaicle shall be considered in the design of thoroughfares and thoroughfare systems and minimum requirements shall be met for the proposed subdivision to be approved. Fail e to satisfy allemergency vehicle access requirements of ratified building codes and fire codes in A Aesign of thoroughfares and thoroughfare systems will result in additional require w en constructing buildings to include, but not be limited to, a requirement for installation $\& a$ building fire sprinkler system.
D. Public transit: Thoroughfares shall be designe to accor rate existing, planned and future public transit. Design accommodations may includ rovis for transit pull off areas and modified curb radii. Curb radii may be tested with nulation software for feasibility.
E. Bicycle provisions: Thoroughfares and community design should pide an opportunity for bicycle travel via a network of bicycle routes, lanes and trails. Bi travel networks shall be connected to existing or proposed regional networks wherey possible. A bicycle route shall be provided within the vehicular thoroughfare where suit sle for shared use of bicycles and vehicles traveling at low speeds and may be indicated with the use of "sharrows" (see Figure 821.1). A dedicated and marked bicycle lane shall be provided within a moderatespeed vehicular thoroughfare. A bicycle trail may be provided separately from the vehicular thoroughfare.

F. Accessibility: Thoroughfares shall be designed to accommodate ADA requirements.
G. Utilities: Thoroughfares shall be designed to accommodate utilities within the right-of-way including, but not limited to, stormwater drainage, lighting, water, sewer, electric, gas, telephone, cable, etc.
H. Gates and thoroughfare access restrictions: Reserve strips or parcels controlling access to thoroughfares shall be prohibited. Gates shall not be permitted to block thoroughfares.
I. Thoroughfare narrowing devices: Thoroughfare narrowing devices including, but not limited to, curb extensions, bulbouts, neckdowns and corner bulges shall not be permitted unless approved by the SCDOT.
J. Thoroughfare construction requirements: All thoroughfares shall be paved in accordance with minimum requirements on file in the office of the SCDOT engineer.
K. Existing thoroughfares: Thoroughfares of an existing subdivision shall not be used as the sole means of ingress and egress in developing a new subdivision or extending an existing one, when other access can be made available and when in the opinion of the town engineer such use would cre a safety hazard.
L. Jurisdictional y ands od critical area: No thoroughfare shall be located within a critical area or fresh ater or s twater wetland unless the applicant shall supply to the SCDOT written approvo fM or the U.S. Army Corps of Engineers, or both, as appropriate.
M. Connectivity: Thoroughfares An interconnected thor between developments vitho for emergency and service ve and in order to plan for futl e development and transportation needs and in order to create neighborhoods. The following thon fare connectivity requirements shall apply:
N. Curb radius modifications \& intersecton triangles:

1. The dimensions for curb radii stand ds are pro ed to accommodate pedestrians as well as emergency and service vehir s. Saller curb radii provide for a narrower street crossing, reduces vehid inel speed. Larger curb radii allow higher turning speeds which compronmse community walkability. The following graphic illustrates the difference between the curb rad and effective turning radius.

In the event that a curb radius needs to be modified to accommodate emergency and service vehicles, turn simulation software should be used and the radius should
be increased incrementally until it is just large enough to allow safe, slow passage of the design emergency or service vehicle.
2. Standard minimum sight triangle for stop conditions at street intersections shall be accommodated for on all thoroughfares and shall be reviewed by the SCDOT engineer at the time of thoroughfare construction plan submittal.
O. Garbage service: For properties platted after the effective date of this ordinance, garbage service shall only be provided to the nearest thoroughfare.
P. Pavement and parking markings and signage: The SCDOT engineer shall determine when and where pavement markings and on-street parking related signs will be installed on all thoroughfares. Pavement markings include but are not limited to parking delineation lines, lane delineation lines and arrows. Final determination of pavement markings and parking signs, including location and type, will be made during thoroughfare construction plan review.
Q. Lots abutting mai ti roughfares: Subdivisions which abut or have included within the proposed areg be su divided any limited access, or major thoroughfare shall provide:

1. A mars nal acd ss thoroughfare, or
2. Reverse fromage with reen planting contained in a non-access reservation along the rear propy line or
3. Lots with rear ser edr as
4. Other treatment as m y be necessary for adequate protection of residential properties and to affor separation shthrough and local traffic.
The SCDOT shall specify whid the bove requirements apply to each individual case based upon adequate servic to the public interest.
R. Thoroughfare types: Thoroughfares types hall be df as follows:

Avenue (AV): A thoroughfare of high vehicula cara and low to moderate speed, acting as a short distance connector between urban Centers and usually equipped with a landscaped median.

Bicycle lane (BL): A dedicated lane for cycling within a derome speed vehicular thoroughfare, demarcated by striping.

Bicycle route (BR): A thoroughfare suitable for the shared use of bicycles and automobiles moving at slow speeds.

Bicycle trail (BT): A bicycle way running independently of a vehicular thoroughfare.
Boulevard (BV): A thoroughfare designed for high vehicular capacity and moderate speed, traversing an urbanized area. Boulevards are usually equipped with slip roads buffering sidewalks and buildings.

Drive (DR): A thoroughfare along the boundary between an urbanized and a natural condition, usually along a waterfront, park or promontory. One side has the urban character of a thoroughfare, with sidewalk and building, while the other side has the qualities of a road or parkway, with naturalistic planting and rural details.

Park street (PS): A sub-urban, urban general or urban center thoroughfare with a wide center median (width may vary) that may serve as an open space feature.

Path (PT): A pedestrian way traversing a park or rural area, with landscape matching the contiguous open space, ideally connecting directly with the urban sidewalk network.

Rear alley (RA): A vehicular way located to the rear of lots providing access to service areas, parking, and outbuildings and containing utility easements. Rear alleys should be paved from building face to building faces or lot lines.

Rear lane (RL): A vehicular way located to the rear of lots providing access to service areas, parking, and outbuildings and containing utility easements. Rear lanes may be paved lightly to driveway standards. The streetscape consists of gravel or landscaped edges.

Road (RD): A local, rural and sub-urban thoroughfare of low-to-moderate vehicular speed and capacity. This type is allocated to more rural areas.

Slip road (SR): An outer vehicular lane or lanes of a thoroughfare designed for slow speeds while inner lanes a higher speed traffic and separated from them by a planted median. (Syn: f Cess ld e, service lane)
Street (ST): Sub rban d urban thoroughfare of low speed and capacity.
Yield (Y): Characterizing a tb a hare that has two-way traffic but only one effective travel lane because of p

TABLE 4. - PRIVATE FRONTAGES
The Private Frontage is the area betw en the building Facades and the Lot lines.

TABLE 5. - BUILDING DISPOSITION

This table approximates the location of the structure relative to the boundaries of each individual Lot, establishing suitable basic building types.
a. Edgeyard: Specific Types - single family House, cottage, villa, estate house, urban villa. A building that occupies the center of its Lot with Setbacks on all sides. This is the least urban of types as the front yard sets it back from the Frontage, while the side yards weaken the spatial definition of the public Thoroughfare space. The front yard is intended to be visually continuous with the yards of adjacent buildings. The rear yard can be secured for privacy by fences and a well-placed Backbuilding and/or Outbuilding.
b. Sideyard: Specific Types - Charleston single house, double house, zero lot line house, twi building that occupies one side of the Lot with the Setb k to the other side. A shallow Frontage Setback defines more url in condition. If the adjacent building is similar with a blu side all, the yard can be quite private. This type permits systemu crimatic orinatation in response to the sun or the breeze. If a Sideyard Hoy House, the type is known as and sometimes noise, are rauce Disposition.
c. Rearyard: Specific Types - Townhause, Rowhou Live-Work unit, loft building, Apartment House, Mixed Bld k, Flex Building, perimeter Block. A building that oceuplo he full Frontage, leaving the rear of the Lot as the sole yard. is is a very urban type as the continuous Facade steadily defines th ublic Thoroughfare. The rear Elevations may be art ated for functional purposes. In its Residential form, Rowhouse. For its Commercial form, the accommodate substantial parking.

TABLE 6. - BUILDING FUNCTION

This table categorizes Building Functions within Transect Zones. Parking requirements are correlated to functional intensity. For Specific Function and Use permitted By Right or by Warrant, see Table 8.

TABLE 8. - SPECIFIC FUNCTION \& USE

Specific Function \& Use. This table expands the categories of Table 6 to delegate specific Functions and uses within Nimmer SPECIAL DISTRICT.

Nimmer SPECIAL DISTRICT	USE

a. RESIDENTIAL

TABLE 9. - CIVIC SPACE

a. Park: A natural preserve available for unstructured recreation. A park may be independent of surrounding building Frontages. Its landscape shall consist of Paths and trails, meadows, waterbodies, woodland and open shelters, all naturalistically disposed. Parks may be lineal, following the trajectories of natural corridors.
 ailable for unstructured recreation. efined by landscaping rather than ape shall consist of lawn and trees, naturalistically dis psed e minimum size shall be $1 / 2$ acre and the maximum shall be oacres.

c. Square: An Open Space available for unstruct d recreation and Civic purposes. A Square is spatigllverin d by building Frontages. Its landscape shall consist orpan $\sqrt{ }$ wns and trees, formally disposed. Squares shall be located δ of important Thoroughfares. The minimum and the maximum shall be 5 acres.
e. Playground: An Open Space designed and equipped for the recreation of children. A playground shall be fenced and shall include an open picnic shelter. Playgrounds shall be interspersed within Residential areas and may be placed within a Block. Playgrounds may be included within parks and greens. There shall be no minimum or maximum size.

TABLE 12. - DEFINITIONS ILLUSTRATED
a. THOROUGHFARE \& FRONTAGES

TABLE 13. - SUSTAINABILITY

Developers are encouraged to include alternative energy production systems if their plans permit.

Nimmer SPECIAL DISTRICT

EXHIBITS

Nimmer SPECIAL DISTRICT

Exhibit A

LEGAL DeSCRIPTION
Deeds Boundary Surveys

PROPERTY DESCRIPTION OF NIMMER TRACT

405.195 Acres

All that Certain Piece, Parcel or Tract of Land, Situate, lying and being in Robert Township, Jasper County, South Carolina and being more particularly described as follows: Beginning at the northeast corner of the lands of Terry D. Murphy et al, as recorded in Plat Book 11, Page 311, of the Jasper County, South Carolina Recorder's Office, said northeast corner being in the west right of way of Tarboro Road, also known as County Road S-27-22, being a 66 foot right of way and having the South Carolina State Plane Coordinates, East Zone, of N233,618.70, E1,997,222.23; Thence with the north line of said Terry D. Murphy et al., South $68^{\circ} 25^{\prime} 32^{\prime \prime}$ West, a distance of 426.91 feet to a concrete monument found; Thence South $20^{\circ} 39^{\prime} 12^{\prime \prime}$ East, a distance of 33.99 feet to an iron pin found and being in the nortbline of the lands of Jeffrey P. Richardson, as recorded in Plat Book 35, Page 249 of the Jasper cour y, South Carolina Recorder's Office; Thence with said north line, North $80^{\circ} 00^{\prime} 52^{\prime \prime}$ West distand of 669.04 feet to a concrete monument found and South $61^{\circ} 25^{\prime} 05^{\prime \prime}$ West, a distance of $\$ 3.55 \mathrm{fr}$ to a point, said point is witnessed by a broken iron pin found at North 09° West, a distanceor 3.0 feet ence along the west line of the lands of David G. Mills, as recorded in Plat Book 22, Page 81 if the lasper County, South Carolina recorder's office, South $12^{\circ} 39^{\prime} 36^{\prime \prime}$ West, a distance of 73 at 10 a point, said point is witnessed by a disturbed concrete monument found at South 60° East, a d stance of 0.8 feet; Thence with the north line of "Subdivision of the Eastern Portion of Tract 'B', a prepared for Jasper County Land Development Company, Inc., as recorded at Plat Book 16, Page 388 of th var per County, South Carolina Recorder's Office, South $60^{\circ} 03^{\prime} 43^{\prime \prime}$ West, a distance of 3023 . ro fe $+\downarrow$ a point in the west right of way of Nimmer Turf Road, a 24 ' right of way, said point is witnessed \downarrow a disturbed iron pin found at South 43° West, a distance of 2.5 feet; Thence with said west right way, No 4* * 19'51" west, a distance of 219.20 feet to a point; Thence along a curve, deflecting to the ig a drstance of 392.34 feet, having a radius of 524.98 feet, a chord bearing of North $22^{\circ} 55^{\prime} 19^{\prime \prime}$ Westand a chord of 383.28 feet to a point; Thence North $01^{\circ} 30^{\prime} 46^{\prime \prime}$ West, a distance of 609.41 feet to a point; The ' North $01^{\circ} 54^{\prime} 37^{\prime \prime}$ West, a distance of 589.44 feet to a point; Thence North $02^{\circ} 18^{\prime} 28^{\prime \prime}$ West, a ${ }^{\circ} \mathrm{St}$ ree of 95.59 feet to a point, said point is witnessed by an iron pin found at North 39° East distance of 5.0 feet; Thence along the lands of 3N Farm Nimmer Family, as recorded in Plat Book 29, Page 359, of the Jasper County, South Carolina Recorder's Office, South $88^{\circ} 40^{\prime} 05^{\prime \prime}$ East, a distance of 265.88 feet to a point, said point is witnessed by an iron pin found at North 75° East, a distance of 3.5 feet; Thence North $00^{\circ} 04^{\prime} 36^{\prime \prime}$ West, a distance of 369.82 feet to a point; Thence North $89^{\circ} 58^{\prime} 37^{\prime \prime}$ East, a distance of 50.00 feet to a point; Thence North $03^{\circ} 43^{\prime} 06$ " East, a distance of 400.00 feet to a point; Thence North $89^{\circ} 50^{\prime} 36$ " West, a distance of 280.80 feet to a point in the aforesaid west right of way of Nimmer Turf Road; Thence North $11^{\circ} 17$ '10" East, a distance of 329.38 feet to a point; Thence South $84^{\circ} 32^{\prime} 56^{\prime \prime}$ East, a distance of 4.80 feet to a point; Thence North $11^{\circ} 36^{\prime} 54$ " East, a distance of 1681.44 feet to a point; Thence North $10^{\circ} 55^{\prime} 18^{\prime \prime}$ East, a distance of 1214.37 feet to a point; Thence along a curve, deflection to the right, a distance of 83.16 feet, having a radius of 57.51 feet, a chord bearing of North $53^{\circ} 13^{\prime} 53^{\prime \prime}$ East and a chord of 76.10 feet to a point in the south right of way of Nimmer Turf road, a 66 feet right of way; Thence with said south right of way, South $85^{\circ} 55^{\prime} 17^{\prime \prime}$ East, a distance of 1056.09 feet to a point in the west line of the lands of Helen R. Raye,
as recorded in Deed Book 333, Page 34, of the Jasper County, South Carolina Recorder's Office; Thence with said west line, South $01^{\circ} 56^{\prime} 09$ " West, a distance of 842.67 feet to a point; Thence along the south line of said Helen R. Raye, South $87^{\circ} 57^{\prime} 14$ " East, a distance of 514.08 feet to a point; Thence along the east line of said Helen R. Raye, North $02^{\circ} 58^{\prime} 01^{\prime \prime}$ East, a distance of 827.90 feet to a point in said south right of way of Nimmer Turf Road; Thence along said south right of way of Nimmer Turf Road, South $85^{\circ} 54^{\prime} 35^{\prime \prime}$ East, a distance of 1392.12 feet to a point; Thence along a curve, deflecting to the left, a distance of 311.07 feet, having a radius of 15771.47 feet, a chord bearing of South $86^{\circ} 53^{\prime} 11^{\prime \prime}$ East and a chord of 311.07 feet to a point; Thence along a curve, deflecting to the left, a distance of 78.69 feet, having a radius of 469.31 feet, a chord bearing of North $87^{\circ} 44^{\prime} 43^{\prime \prime}$ East and a chord of 78.60 feet to a point in the west right of way of Tarboro Road, also known as County Road S-27-22 and being a 66 feet right of way; Thence with said west right of way, South $15^{\circ} 29^{\prime} 36^{\prime \prime}$ East, a distance of 982.09 feet to a point; Thence South $15^{\circ} 38^{\prime} 50^{\prime \prime}$ East, a distance of 142.45 feet to a concrete monument found; Thence leaving said west right of way and along the north line of the lands of Brian L. \& Shannon S. Ratkovich, as recorded in Plat Book 25, Page 241 of the Jasper Cou'ty, South Carolina Recorder's Office, South $77^{\circ} 02^{\prime} 49^{\prime \prime}$ West, a distance of 749.39 feet to a point: en with the west line of the lands of Brian L. \& Shannon S. Ratkovich, South $15^{\circ} 35^{\prime} 18^{\prime \prime}$ East distang of 284.79 feet to a point; Thence with the south line of the lands of Brian L. \& Shanno S. Ra bvich, North $77^{\circ} 04^{\prime} 27^{\prime \prime}$ East, a distance of 749.03 feet to a point in aforesaid west right of vary line of T poro Road; Thence along said west right of way, South $15^{\circ} 43^{\prime} 48^{\prime \prime}$ East, a distance of 615, feet a point; Thence South $12^{\circ} 55^{\prime} 32^{\prime \prime}$ East, a distance of 141.86 feet to a point; Thence ald a rve deflecting to the right, a distance of 625.52 feet, having a radius of 5022.64 feet, a chord bea hg of South $09^{\circ} 31^{\prime} 57^{\prime \prime}$ East and a chord of 625.11 feet to a point; Thence South $06^{\circ} 34^{\prime} 33^{\prime \prime}$ East, a distance of 192.98 feet to the Point of Beginning. Containing 405.195 acres. Subject to all easements, righto $r y$ y y restrictions of record.

Nimmer SPECIAL DISTRICT

EXHIBIT B
CONCEPTUAL LAND USE MASTER PLAN

J - 30596.0000
May 2024

Nimmer SPECIAL DISTRICT

Exhibit C

AQUATIC RESOURCES DELINEATION

EXHIBIT

J - 30596.0000
May 2024

Nimmer SPECIAL DISTRICT

Exhibit D

INITIAL TRAFFIC ANALYSIS

J - 30596.0000
May 2024

THOMAS HUTTON

Prepared for:
D.R. HORTON

$$
J-30596.0000
$$

JANUARY 2024

TABLE OF CONTENTS

1. Introduction Page 1
2. Existing Conditions Page 1
3. Historical Volumes Page 2
4. Trip Generation Page 3
5. Trip Distribution Page 3
6. Future (No-Build / Build Out) Conditions Page 4
7. Future (No-Build / Build Out) Conditions with Improvements Page 6
8. Summary / Conclusions Page 8
FIGURES
Project Location Map
Sketch Plan Figure 1
Figure 2
2023 Existing Peak Hour Traffic V 2035 Site Trip Distribution Figure 5
.Figure 6
.Figure 7
Figure 8A
.Figure $8 B$
APPENDICES
Existing Traffic Counts Appendix A
Synchro HCM 6 Analysis, 2023 Existing Peak Hour Volumes Appendix B
Appendix C
Trip Generation Calculations Appendix D
Synchro HCM 6 Analysis, 2035 No-Build Peak Hour Volumes. Appendix E
Synchro HCM 6 Analysis, 2035 Build Out Peak Hour Volumes Appendix F
Synchro HCM 6 Analysis, 2035 Build Out Peak Hour Volumes with Improvements Appendix G
Auxiliary Turn Lane Analysis Appendix H
Signal Warrant Analysis Appendix I

1. INTRODUCTION

The Nimmer Tract site proposes a residential development and a fire station. The site is located between Tarboro Road (SC 27-22), Tillman Road (SC 336), and Nimmer Turf Road, the site is west of Interstate 95 in Ridgeland, South Carolina (Figure 1). The proposed development currently includes 1,150 single-family detached houses, 150 townhomes, and a 10,000 SF fire station. The residential site proposes 3 access points, two are located on Tarboro Road (SC 27-22) and one is located on Nimmer Turf Road, the access to the fire station is located on Tarboro Road (SC 27-22). A Conceptual site plan is shown in Figure 2.

2. Existing Conditions

Roadway Conditions
Tarboro Road (SC 2 2) is a north-south 2-lane roadway with no posted speed limit; however a $55-\mathrm{mpl}$, limit is assumed for the roadway as it is a state road.

Tillman Road speed limit.

Nimmer Turf Road is two-lan of the site and has a $90-\mathrm{d}$ gree
adw. that is an east-west roadway that is located north that transforms the road to a north-south roadway located to the east of the site. N imer Turf has no posted speed limit.

The study intersections for the traffic impact ysis are the following:

- Tarboro Road (SC 27-22) \& Tillm 300 (SC 336)
- Tarboro Road (SC 27-22) \& Nimmer Road
- Tillman Road (SC 336) \& Nimmer Turf oad
- Proposed access points:
- Tarboro Road (SC 27-22) \& Access
- Tarboro Road (SC 27-22) \& Acces
- Nimmer Turf Road \& Access 3
- Tarboro Road (SC 27-22) \& Fire Station Access

Traffic Conditions

Traffic operations at intersections are typically evaluated in erms of "Level of Service" or LOS. The LOS is defined by the Transportation Research Board's Highway Capacity Manual (HCM) from which LOS A represents free flow conditions with minimal delays; LOS F represents congested conditions. Generally, an LOS D or better is considered acceptable.

Table 1 shows the HCM criteria for both signalized and unsignalized intersections.
Table 1. Level of Service definitions

LEVEL OF SERVICE	Control Delay per Vehicle (seconds)	
	Unsignalized \& Roundabouts	Signalized
A	≤ 10	≤ 10
B	>10 and ≤ 15	>10 and ≤ 20
C	>15 and ≤ 25	>20 and ≤ 35
D	>25 and ≤ 35	>35 and ≤ 55
E	>35 and ≤ 50	>55 and ≤ 80
F	>50	>80

Morning and afternoon peak hour turning movement counts were collected at the following intersections in November 2023:

- Tarboro Road (SC 27-22) \& Tillman Road (SC 336)
- Tarboro Road (SC 27-22) \& Nimmer Turf Road
- Tillman Road (SC 336) \& Nimmer Turf Road

A 24 hour count was collected near the site access point on the roadway of Tarboro Road (SC 27-22), and an additional count was collected east of the site on Tillman Road (SC 336).

AM and PM peak hour volumes are shown in Figure 3. Traffic count data is included in Appendix A.

Capacity analyses were completed based on the counts using Trafficware's Synchro software. Results are swn in Table 2 and included in Appendix B.

Table 2. Current cvels of ervice (2023)

	Control	2023 AM Peak Hour		2023 PM Peak Hour	
		LOS	DELAY (sec)	LOS	$\begin{gathered} \text { DELAY } \\ \text { (sec) } \\ \hline \end{gathered}$
Tarboro Road (SC 27-22) \& Tillman ad (SC 336)	Minor Stop				
EB approach lefts (Tillman Rd or		A	7.4	A	7.6
WB approach lefts (Tillman Ro d))		A	0	A	7.4
NB approach (Tarboro Re ad)		B	11.5	B	10.8
SB approach (Tarboro Road)		B	11.8	B	10.5
Tillman Road (SC 336) \& Nimmer Turf Road					
EB approach lefts (Tillman Road)	-		7.4	A	0
SB approach (Nummer Turf Road)			10.2	A	9.6
Tarboro Road (SC 27-22) \& Nimmer Turf Road	Minor Stop				
EB approach (Nimmer Turf Road)		A		A	9.2
NB approach lefts (Tarboro Road)		A		A	0

The study intersections operate at acceptable levels of service during the AM and PM peak hours.

3. Historical Volumes

South Carolina Department of Transportation (SCDOT) count stations are located on Tillman Road (SC 336) to the west of the project location and Smiths Crossing (SC 27-29) to the southwest. The SCDOT Annual Average Daily Traffic (AADT) data from the count stations is shown in Table 3; the data is included in Appendix C.

Table 3. GDOT Count Station Data

Count Station	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
\#027-0191 Tillman Road (SC 336)	1,800	1,900	1,950	2,000	2,000	2,000	2,200	2,000	2,000	2,100
\#027-0242 Smiths Crossing (SC 27-29)	1,100	1,050	1,150	1,150	1,150	1,150	1,900	1,750	1,250	1,300

South Carolina Department of Transportation has count stations located near the project site. The calculated growth rate based on an average of the last 10 years of daily traffic data is 1.3%, and twelve years of growth at 1.3% per year is added to the existing traffic volumes to calculate 2035 No -Build volumes.
4. Trip Generation

Trips generated re esti ated using the standard rates and equations from the Institute of Transportation Englmeers, Trip Geration, $11^{\text {th }}$ Edition, 2021. Trip generation is shown in Table 4, and the calculations drok trip percentages are included in Appendix D.

Table 4. Trip Generation

ITE Category	Land Use	Daily	AM Peak		PM Peak	
			Enter	Exit	Enter	Exit
210	Single-Family Detached Housin 1,150 Dwelling Units		172	516	622	365
215	Single-Family Attached Housing 150 Dwelling Units			54	51	35
575	Fire and rescue Station 10,000 SF Gross Floor Area			1	1	4
	Totals	10,685	194	471	674	404

5. TRIP DISTRIBUTION

The primary site trip distribution patterns are assumed to split in accordance with the directional patterns observed in the recent counts and the site layout and surrounding road network. The trip distribution and assignment is shown in Figure 5. For this study, the general distribution assumptions are as follows:

- 25% to/from the West on Tillman Road (SC 336)
- 5% to/from the North on Tarboro Road (SC 27-22)
- 45% to/from the South on Tarboro Road (SC 27-22)
- 25% to/from the East on Tillman Road (SC 336)

6. Future (No-Build/Build Out) Conditions

The site generated volumes (Figure 6) are added to the No-Build volumes to determine the 2035 morning and afternoon Build out peak hour volumes (Figure 7). Table 5 shows the intersection levels of service with and without the proposed development. Synchro reports are included in Appendix E for the 2035 no-build condition and Appendix F for the 2035 build out condition.

Table 5. Future Levels of Service (2035)

The study intersections are projected to operate at acceptable levels of service during the 2035 no-build. During the 2035 build out conditions, at the intersection of Tarboro Road (SC 27-22) \& Tillman Road (SC 336), the southbound approach will experience LOS F in the AM and PM peak hour and the northbound approach will experience LOS F in the PM peak hour.

Auxiliary Turn Lane Analysis

The Warrants for Left and Right Turn Lanes were consulted using the SCDOT Roadway Design Manual. The following study intersections were analyzed:

- Tarboro Road (SC 27-22) \& Nimmer Turf Road
- Tarboro Road (SC 27-22) \& Tillman Road (SC 336)
- Tillman Road (SC 336) \& Nimmer Turf Road
- Tarboro Road (SC 27-22) \& Access 1
- Tarboro Road (SC 27-22) \& Access 2
- Nimmer Turf Rgyd \& Access 3
- Tarboro Rod (S 27-22) \& Fire Station Access

Tarboro Road (27-22) Nimmer Turf Road does not meet the minimum thresholds for a southbound righ ren or for gorthbound left turn lane.

Tarboro Road (SC 27-22) \& man Road (SC 336) meets for a right turn lane at the westbound approach and en urn he at the eastbound approach.
Tillman Road (SC 336) \& Nimm Turf Road meets for a left turn lane at the eastbound approach, the minimum threshods are not mor westbound right.
Tarboro Road (SC 27-22) \& Acces s for a left turn lane on the northbound approach, the minimum threshold is not me or the southbound right turn lane.

Tarboro Road (SC 27-22) \& Access 2 meets fo left Jrn lane on the northbound approach, the minimum threshold is not met for sound right turn lane.

Nimmer Turf Road \& Access 3 meets for a right turn lane on the no bound approach, the minimum threshold is not met for the southbound left turn lane. T tho flong Nimmer turf is not significant enough to require a turn lane, the inters ction will operate at an acceptable LOS.

Tarboro Road (SC 27-22) \& Fire Station Access does not meet the minimum thresholds for a left turn lane on the northbound approach or for the southbound right turn lane.

The auxiliary turn lane analysis is shown in Appendix G.
Signal Warrant Analyses
Signal Warrants have been reviewed for Tarboro Road (SC 27-22) \& Tillman Road (SC 336) in the 2035 build out condition. The results are summarized in the table below:

Table 6: Signal Warrant Results

	Warrant	*8-hr Warrant		4-hr Warrant	
		100% Vols	70% Vols	100% Vols	70% Vols
Intersection					
Tarboro Road (SC 27-22) \& Tillman Road (SC 336)		N	Y	N	Y

*Counts were collected from 6-9AM \& 2-6PM.
The 70% volume warrant is applicable due to the speed limit on Tarboro Road (SC 27-22).
Signal Warrants have been reviewed for Tarboro Road (SC 27-22) \& Tillman Road (SC 336) and are met in the 2035 build out condition. Additional data will need to be collected once the buildings areccupied to confirm the 8-hour warrant is met. At Tarboro Road (SC 27-22) \& Tillman Ro (3 (336), the northbound and southbound approaches are used for the major street proad due to higher ADT generated from the site traffic. The signal warrant analys s include in Appendix H.

The signal warrant is met whe approach, this is the only sce rio mere warrants are met. If signals are used the auxiliary turn lanes should not be ind de unlf s queuing and blocking is an issue.
7. FUTURE (NO-BUILD/BUILD OUt) CONDITIONS WITM PROVEMENTS

Various roadway and traffic control modit ons are modelled to mitigate unacceptable levels of service in the 2035 build out cond on. Table- presents a summary of the study intersections with improved levels of servic Table 7 es ts a summary of alternate XXXX for the intersection of Tarboro Road (SC 27-22) \& Til n Rod (SC 336). Synchro reports are included in Appendix G for the 2035 build out wi mprements condition.

Table 7. Future Levels of Service with Improvements (2035)

Intersection	Control	2035 AM Peak Hour		2035 PM Peak Hour	
		Build Out (LOS/DELAY)	Build Out Improver_nts (LOS/DELAY)	$\begin{aligned} & \text { Build Out } \\ & \text { (LOS/DELAY) } \end{aligned}$	Build Out w/ Improvements (LOS/DELAY)
Tillman Road (SC 336) \& Nimmer Turf Road	Minor Stop				
EB approach lefts (Tillman Road)		A / 7.6	A / 7.6	A / 8.1	A / 8.1
SB approach (Nummer Turf Road)		B/11.9	B/11.9	B/14.1	B / 14.0
Tarboro Road (SC 27-22) \& Access 1	Minor Stop				
EB approach (Access 1)		B / 13.2	B / 13.2	B / 12.2	B / 12.1
NB approach lefts (Tarboro Road)		A / 8.1	A / 8.1	A / 8.5	A / 8.5
Tarboro Road (SC 27-22) \& Access 2	Minor Stop				
EB approach (Access 1)		B/10.0	B/10.0	A / 9.9	A / 9.9
NB approach lefts (Tarboro Road)		A / 7.6	A / 7.6	A / 7.8	A / 7.8

The study intersections are projected to operate at acceptable levels of service during the 2035 build out condition with the recommended improvements installed.

Table 8. Tarboro Road (SC 27-22) \& Tillman Road (SC 336) Future Improvements (2035)

Intersection	AM Peak Hour				PM Peak Hour			
	Future Build Out LOS/Delay	Future Build Out w/ Improvements LOS/Delay			Future Build Out LOS/Delay	Future Build Out w/ Improvements LOS/Delay		
Tarboro Road (SC 27-22) \& Tillman Road (SC 336)	$\begin{aligned} & \circ \\ & \stackrel{0}{0} \\ & \stackrel{y}{\omega} \\ & \stackrel{0}{y} \end{aligned}$				$\begin{aligned} & 0.0 \\ & \stackrel{0}{N} \\ & \stackrel{0}{0} \\ & \stackrel{C}{\Sigma} \end{aligned}$			\# 0 0 0 0 0 0 0
EB approach (Tillman Road)		$\begin{gathered} \hline \text { A / } 7.6 \\ \text { (lefts) } \end{gathered}$	B / 16.1	B / 10.3	$\begin{gathered} \hline \text { A / } 8.4 \\ \text { (lefts) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { A / } 8.4 \\ \text { (lefts) } \\ \hline \end{gathered}$	A / 8.8	A / 6.3
WB approach (Tillman Road)	$\bar{A} / 0$	$\begin{aligned} & \text { A / O } \\ & \text { (lefts) } \end{aligned}$	B / 13.4	A / 4.7	$\begin{gathered} \text { A / } 7.5 \\ \text { (lefts) } \end{gathered}$	$\begin{gathered} \text { A / } 7.5 \\ \text { (lefts) } \end{gathered}$	B / 10.1	A / 9.7
NB approach (Tarboro Road)	D/27		A / 6.7	A / 6.1	F / 144.3	F/ 134.5	A / 9.8	A / 8.0
SB approach (Tarboro Road)	F/ 279.1	249	B / 11.4	A / 8.9	F/>300	F/>300	A / 9.8	A / 7.0
Overall Intersection	-		B / 12.3	A / 8.5	-	-	A / 9.7	A / 7.8

The intersection of Tarboro Road (SC 27-22) I' Man Road (SC 336) is projected to operate at acceptable levels of service duri ? 35 build out condition with the use of the traffic signal or the roundabout improve ents. The intersection does not operate at acceptable levels of service for the minor st p with tury nes improvement.

8. SUMMARY / CONCLUSIONS

The Nimmer Tract site proposes a residential development and a fire station. The site is located between Tarboro Road (SC 27-22), Tillman Road (SC 336), and Nimmer Turf Road, the site is west of Interstate 95 in Ridgeland, South Carolina. The proposed development currently includes 1,150 single-family detached houses, 150 townhomes, and a 10,000 SF fire station. The residential site proposes 3 access points, two are located on Tarboro Road (SC 27-22) and one is located on Nimmer Turf Road, the access to the fire station is located on Tarboro Road (SC 27-22).

As a result of the highway capacity and auxiliary turn lane warrants studied in this report, no mitigation is required at the intersections of Tarboro Road (SC 27-22) \& Nimmer Turf Road and Nimmer Turf Road \& Access 3.

Based upon auxiliary Urn lane requirements, mitigation is recommended as discussed below:

Install 150 fr ft turn ly les on Tarboro Road (SC 27-22), northbound, at the approaches to Access 1 d ess 2.

Install a 150 ft left turn lan no Tilln an Road (SC 336), eastbound, at the approach to
Nimmer Turf Road.
At the Intersection of Tillman pad (SC 336) \& Tarboro Road (SC 27-22), traffic signal warrants are met in the build our scenario. ndabout is an alternate recommendation to mediate the site generated traffic eve right of way constraints and the inability of the developer to acquire additional right d ay make this alternative unfeasible.
The study intersections are projected to op ate at de levels of service during the 2035 Build Out condition with the recommended it

J - 30596.0000
THOMAS HUTTON

THOMAS HUTTON

J - 30596.0000

January 2024

SHORTEBCOUNTS
 Traffic Data Specialists

735 Maryland St
Columbia, SC 29201
We Can't say we're the Best, but you Can!
File Name : Tarboro Rd @ Nimmer Turf Rd Site Code :
Start Date : 12/05/2023
Page No : 1

Traffic Data Specialists

735 Maryland St

Columbia, SC 29201
We Can't say we're the Best, but you Can!
File Name : Tarboro Rd @ Nimmer Turf Rd Site Code :
Start Date: 12/05/2023
Page No : 2

Traffic Data Specialists

735 Maryland St

Columbia, SC 29201
We Can't say we're the Best, but you Can!
File Name : Tarboro Rd @ Nimmer Turf Rd Site Code :
Start Date : 12/05/2023
Page No : 3

	Tarboro Rd Southbound					Westbound					Tarboro Rd Northbound					Nimmer Turf Rd Eastbound					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis From 07:00 to 08:45-Peak 1 of																					
Peak Hour fo	Entire	Inter	ection	Begins	$\text { at } 07: 1$																
07:15	0	19	1	0	20			0	0	0	1	7	0	0	8	0	0	1	0	1	29
07:30	0	15	0	0		0		0	0	0	0	26	0	0	26	0	0	0	0	0	41
07:45	0	33	0	0		0		0	0	0	0	39	0	0	39	1	0	0	0	1	73
08:00	0	34	0	0			0	0	0	0	0	15	0	0	15	1	0	0	0	1	50
Total Volume	0	101	1	0	102		0		0	0	1	87	0	0	88	2	0	1	0	3	193
\% App. Total	0	99	1	0		0	0				1.1	98.9	0	0		66.7	0	33.3	0		
PHF	. 000	. 743	. 250	. 000	. 750	. 000				. 000	. 250	. 558	. 000	. 000	. 564	. 500	. 000	. 250	. 000	750	. 661
Passenger Vehicles	0	100	1	0	101	0				0	1	87	0	0	88	2	0	1	0		192
\% Passenger Vehicles	0	1	0			0				0	0	0	0	0	0	0	0	0	0	0	1
Heavy Vehicles	0	1.0	0	0	1.0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0.5
Buses	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
\% Buses	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0

Traffic Data Specialists

735 Maryland St

Columbia, SC 29201
We Can't say we're the Best, but you Can!
File Name : Tarboro Rd @ Nimmer Turf Rd Site Code :
Start Date: 12/05/2023
Page No : 4

	Tarboro Rd Southbound					Westbound					Tarboro Rd Northbound					Nimmer Turf Rd Eastbound					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis From 14:00 to 15:45-Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 14:00																					
14:00	0	7	0	0	7		0	0	0	0	0	17	0	0	17	0	0	0	0	0	24
14:15	0	19	0	0	19	0		0	0	0	0	22	0	0	22	1	0	1	0	2	43
14:30	0	38	0	0	3	0		0	0	0	0	12	0	0	12	0	0	0	0	0	50
14:45	0	10	1	0		0		0	0	0	0	10	0	0	10	0	0	0	0	0	21
Total Volume	0	74	1	0		0		0	0	0	0	61	0	0	61	1	0	1	0	2	138
\% App. Total	0	98.7	1.3	0			0	0	0		0	100	0	0		50	0	50	0		
PHF	. 000	. 487	. 250	. 000	. 493	00	. 000	. 000	00	. 000	. 000	. 693	. 000	. 000	.693	. 250	. 000	250	. 000	250	690
Passenger Vehicles	0	73	1	0	74	0				0	0	60	0	0	60	1	0	1	0	2	136
\% Passenger Vehicles Heavy Vehicles	0	1	0	0	1	0				0	0	1	0	0	1	0	0	0	0	0	2
\% Heavy Vehicles	0	1.4	0	0	1.3	0				0	0	1.6	0	0	1.6	0	0	0	0	0	1.4
Buses	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
\% Buses	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0

Traffic Data Specialists

735 Maryland St

Columbia, SC 29201
We Can't say we're the Best, but you Can!
File Name : Tarboro Rd @ Nimmer Turf Rd Site Code :
Start Date: 12/05/2023
Page No : 5

	Tarboro Rd Southbound					Westbound					Tarboro Rd Northbound					Nimmer Turf Rd Eastbound					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis From 16:00 to 17:45-Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 17:00																					
17:00	0	14	1	0	15		0	0	0	0	0	18	0	0	18	2	0	0	0	2	35
17:15	0	12	0	0	12			0	0	0	0	18	0	0	18	1	0	0	0	1	31
17:30	0	15	1	0		0		0	0	0	0	17	0	0	17	0	0	0	0	0	33
17:45	0	9	0	0		0		0	0	0	0	20	0	0	20	0	0	0	0	0	29
Total Volume	0	50	2	0		0		0	0	0	0	73	0	0	73	3	0	0	0	3	128
\% App. Total	0	96.2	3.8	0			0	0	0		0	100	0	0		100	0	0	0		
PHF	. 000	. 833	. 500	. 000	. 813	00	. 000			. 000	. 000	. 913	. 000	. 000	. 913	. 375	. 000	. 000	. 000	. 375	. 914
Passenger Vehicles	0	50	1	0	51	0				0	0	72	0	0	72	1	0	0	0	1	124
\% Passenger Venicles																					
Heavy Vehicles	0	0	1	0	1	0				0	0	1	0	0	1	2	0	0	0	2	4
\% Heary Vehicles	0	0	50.0	0	1.9	0				0	0	1.4	0	0	1.4	66.7	0	0	0	66.7	3.1
Buses	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0
\% Buses	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0

SHORTE ECOUNTS
 Traffic Data Specialists

735 Maryland St
 Columbia, SC 29201

We Can't say we're the Best, but you Can!
File Name : Tillman Rd @ Nimmer Turf Rd Site Code :
Start Date: 12/05/2023
Page No : 1

Traffic Data Specialists
735 Maryland St
Columbia, SC 29201
We Can't say we're the Best, but you Can!
File Name : Tillman Rd @ Nimmer Turf Rd Site Code :
Start Date : 12/05/2023
Page No : 2

Traffic Data Specialists

735 Maryland St
 Columbia, SC 29201

We Can't say we're the Best, but you Can!
File Name : Tillman Rd @ Nimmer Turf Rd Site Code :
Start Date : 12/05/2023
Page No : 3

	Nimmer Turf Rd Southbound					Tillman Rd Westbound					Northbound					Tillman Rd Eastbound					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis From 07:00 to 08:45-Peak 1 of																					
Peak Hour fo	Entire	Inters	ection	Begins	$5 \text { at } 07: 1$																
07:15	2	0	0	0				0	0	13	0	0	0	0	0	2	33	0	0	35	50
07:30	2	0	0	0		0		3	0	16	0	0	0	0	0	3	33	0	0	36	54
07:45	1	0	0	0		0		1	0	17	0	0	0	0	0	0	40	0	0	40	58
08:00	1	0	0	0			27	0	0	27	0	0	0	0	0	1	26	0	0	27	55
Total Volume	6	0	0	0						73	0	0	0	0	0	6	132	0	0	138	217
\% App. Total	100	0	0	0		0	94.5				0	0	0	0		4.3	95.7	0	0		
PHF	. 750	. 000	. 000	. 000	. 750	. 000				. 676	. 000	. 000	. 000	. 000	. 000	. 500	825	. 000	. 000	863	935
Passenger Venicies	4	0	0	0	4	0				${ }^{68}$	0		0	0	0	6	128	0	0	134	206
\% Passenger Vehicles Heavy Vehicles	2	0	0	0	2	0				5	0	0	0	0	0	0	2	0	0	2	9
\% Heary Vehicles	33.3	0	0	0	33.3	0	7.2		0	6.8	0	0	0	0	0	0	1.5	0	0	1.4	4.1
Buses	0	0	0	0	0	0	0		0		0	0	0	0	0	0	2	0	0	2	2
\% Buses	0	0	0	0	0	0	0					0	0	0	0	0	1.5	0	0	1.4	0.9

Traffic Data Specialists

735 Maryland St

Columbia, SC 29201
We Can't say we're the Best, but you Can!
File Name : Tillman Rd @ Nimmer Turf Rd Site Code :
Start Date : 12/05/2023
Page No : 4

	Nimmer Turf Rd Southbound					Tillman Rd Westbound					Northbound					Tillman Rd Eastbound					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis From 14:00 to 15:45-Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 14:15																					
14:15	0	0	1	0	1		22	0	1	23	0	0	0	0	0	1	22	0	0	23	47
14:30	4	0	1	0				1	0	34	0	0	0	0	0	0	21	0	0	21	60
14:45	1	0	0	0		0		0	0	22	0	0	0	0	0	1	14	0	0	15	38
15:00	0	0	0	0		0		0	0	27	0	0	0	0	0	0	10	0	0	10	37
Total Volume	5	0	2	0		0		1	1	106	0	0	0	0	0	2	67	0	0	69	182
\% App. Total	71.4	0	28.6	0			58.1	0.9	0.9		0	0	0	0		2.9	97.1	0	0		
PHF	. 313	. 000	. 500	. 000	. 350	00	788		50	. 779	. 000	. 000	. 000	. 000	. 000	. 500	. 761	. 000	. 000	.750	758
Passenger Vehicles	5	0	2	0	7	0				105	0	0	0	0	0	2	65	0	0	67	179
\% Passenger Venicles																					
Heavy Vehicles	0	0	0	0	0	0				0	0	0	0	0	0	0	2	0	0	2	2
\% Heary Vehicles	0	0	0	0	0	0				0	0	0	0	0	0	0	3.0	0	0	2.9	1.1
Buses	0	0	0	0	0	0			0	1	0	0	0	0	0	0	0	0	0	0	1
\% Buses	0	0	0	0	0	0	1.0		0	0.9	0	0	0	0	0	0	0	0	0	0	0.5

Traffic Data Specialists

735 Maryland St

Columbia, SC 29201
We Can't say we're the Best, but you Can!
File Name : Tillman Rd @ Nimmer Turf Rd Site Code :
Start Date : 12/05/2023
Page No : 5

	Nimmer Turf Rd Southbound					Tillman Rd Westbound					Northbound					Tillman Rd Eastbound					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis From 16:00 to 17:45-Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 17:00																					
17:00	2	0	3	0	5		24	3	0	27	0	0	0	0	0	0	8	0	0	8	40
17:15	3	0	0	0	3	0	29	2	0	31	0	0	0	0	0	0	21	0	0	21	55
17:30	2	0	1	0		0		1	0	33	0	0	0	0	0	0	16	0	0	16	52
17:45	4	0	0	0		0		3	0	35	0	0	0	0	0	0	20	0	0	20	59
Total Volume	11	0	4	0		0	7	9	0	126	0	0	0	0	0	0	65	0	0	65	206
\% App. Total	73.3	0	26.7	0			52.9	7.1	0		0	0	0	0		0	100	0	0		
PHF	. 688	. 000	. 333	. 000	750	0	. 914	. 750	O0	. 900	. 000	. 000	. 000	. 000	. 000	. 000	. 774	. 000	. 000	774	. 873
Passenger Vehicles	11	0	3	0	14	0				121	0	0	-	0	0	0	61	0	0	61	196
\% Passenger Vehicles Heavy Vehicles	0	0	1	0	1	0				4	0	0	0	0	0	0	3	0	0	3	8
\% Heavy Venicles	0	0	25.0	0	6.7	0				3.2	0	0	0	0	0	0	4.6	0	0	4.6	3.9
Buses	0	0	0	0	0	0			0	1	0	0	0	0	0	0	1	0	0	1	2
\% Buses	0	0	0	0	0	0	0.9		0	0.8	0	0	0	0	0	0	1.5	0	0	1.5	1.0

SHORTE ECOUNTS
 Traffic Data Specialists

735 Maryland St
 Columbia, SC 29201

We Can't say we're the Best, but you Can!
File Name : Tillman Rd @ Tarboro Rd Site Code :
Start Date : 12/05/2023
Page No : 1

	Tarboro Rd Southbound				Tillman Rd Westbound				Tarboro Rd Northbound				Tillman Rd Eastbound				
Start Time	Left	Thru	Right		Ler	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Total
07:00	2	15	0		0	12	0	0	0	5	0	0	3	29	0	0	66
07:15	4	13	2			14	0	0	0	2	0	0	2	37	0	0	74
07:30	1	14	1			10	0	0	0	10	0	0	14	26	0	0	76
07:45	8	15	12			8	0	0	0	15	0	0	16	32	0	0	106
Total	15	57	15	0	0			0	0	32	0	0	35	124	0	0	322
08:00	8	14	11	0	0			0	0	1	0	0	6	22	0	0	80
08:15	2	3	1	0	0			0	0	3	1	0	0	20	0	0	45
08:30	2	5	0	0	0	12		0	0	3	0	0	1	21	0	0	45
08:45	3	2	2	0	0	11	0	0	0	3	1	0	0	17	0	0	39
Total	15	24	14	0	0		1			10	2	0	7	80	0	0	209
14:00	1	4	3	0	0	18	0		0		0	0	4	14	0	0	53
14:15	10	7	2	0	0	22	0		0		0	0	6	18	0	0	77
14:30	19	8	11	0	0	25	0		0	,	0	0	3	24	0	0	93
14:45	2	4	4	0	0	17	0	0	0		0	0	2	14	0	0	49
Total	32	23	20	0	0	82	0	0			0	0	15	70	0	0	272
15:00	4	4	3	0	0	27	0	0	1	2	1		2	9	1	0	54
15:15	4	5	6	0	0	27	0	0	0	3	2		4	13	0	0	64
15:30	4	7	1	0	1	28	0	0	0	8	1		1	17	0	0	68
15:45	5	1	6	0	0	18	0	0	0	6	0	0	3	13	0	0	52
Total	17	17	16	0	1	100	0	0	1	19		0	10	52	1	0	238
16:00	5	5	2	0	1	25	0	0	1	5	0	0	4	21	0	0	69
16:15	7	6	3	0	1	31	0	0	0	2	1	0	2	17	0	0	70
16:30	2	8	7	0	2	32	0	0	0	6	1	0	4	25	0	0	87
16:45	6	8	0	0	1	22	0	0	0	6	0	0	1	16	0	0	60
Total	20	27	12	0	5	110	0	0	1	19	2	0	11	79	0	0	286
17:00	5	4	6	0	0	31	0	0	1	10	0	0	0	11	0	0	68
17:15	7	3	2	0	0	34	0	0	0	12	0	0	2	24	0	0	84
17:30	4	6	5	0	1	31	0	0	0	8	1	0	1	16	0	0	73
17:45	3	5	3	0	1	33	0	0	0	9	0	0	4	24	0	0	82
Total	19	18	16	0	2	129	0	0	1	39	1	0	7	75	0	0	307
Grand Total	118	166	93	0	8	521	1	0	3	149	9	0	85	480	1	0	1634
Apprch \%	31.3	44	24.7	0	1.5	98.3	0.2	0	1.9	92.5	5.6	0	15	84.8	0.2	0	
Total \%	7.2	10.2	5.7	0	0.5	31.9	0.1	0	0.2	9.1	0.6	0	5.2	29.4	0.1	0	
Passenger Vehicles	116	166	92	0	7	498	0	0	3	148	9	0	84	464	1	0	1588
\% Passenger Vehicles	98.3	100	98.9	0	87.5	95.6	0	0	100	99.3	100	0	98.8	96.7	100	0	97.2
Heavy Vehicles	2	0	1	0	1	18	1	0	0	1	0	0	1	12	0	0	37
\% Heavy Vehicles	1.7	0	1.1	0	12.5	3.5	100	0	0	0.7	0	0	1.2	2.5	0	0	2.3
Buses	0	0	0	0	0	5	0	0	0	0	0	0	0	4	0	0	9
\% Buses	0	0	0	0	0	1	0	0	0	0	0	0	0	0.8	0	0	0.6

Traffic Data Specialists
735 Maryland St
Columbia, SC 29201
We Can't say we're the Best, but you Can!
File Name : Tillman Rd @ Tarboro Rd Site Code :
Start Date: 12/05/2023
Page No : 2

Traffic Data Specialists

735 Maryland St

Columbia, SC 29201
We Can't say we're the Best, but you Can!
File Name : Tillman Rd @ Tarboro Rd
Site Code :
Start Date: 12/05/2023
Page No : 3

Traffic Data Specialists

735 Maryland St

Columbia, SC 29201
We Can't say we're the Best, but you Can!
File Name : Tillman Rd @ Tarboro Rd
Site Code :
Start Date: 12/05/2023
Page No : 4

	Tarboro Rd Southbound					Tillman Rd Westbound					Tarboro Rd Northbound					Tillman Rd Eastbound					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis From 14:00 to 15:45-Peak 1 of 1																					
Peak Hour fo	Entire	Inters	ection	Begin	at 14:1																
14:15	10	7	2	0	19		22	0	0	22	0	12	0	0	12	6	18	0	0	24	77
14:30	19	8	11	0	38		25	0	0	25	0	3	0	0	3	3	24	0	0	27	93
14:45	2	4	4	0	10			0	0	17	0	6	0	0	6	2	14	0	0	16	49
15:00	4	4	3	0		0		0	0	27	1	2	1	0	4	2	9	1	0	12	54
Total Volume	35	23	20	0		0		0	0	91	1	23	1	0	25	13	65	1	0	79	273
\% App. Total	44.9	29.5	25.6	0			100	0	0		4	92	4	0		16.5	82.3	1.3	0		
PHF	. 461	. 719	. 455	. 000	. 513	U00	. 843	. 000	00	. 843	. 250	. 479	. 250	. 000	. 521	. 542	. 677	. 250	. 000	. 731	. 734
Passenger Vehicles	34	23	20	0	77	0	89			89	1	23	1	0	25	13	63	1	0	77	268
\% Passenger Vehicles Heavy Vehicles	1	0	0	0	1	0				0	0	0	0	0	0	0	2	0	0	2	3
\% Heavy Vehicles	2.9	0	0	0	1.3	0				0	0	0	0	0	0	0	3.1	0	0	2.5	1.1
Buses	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	0	0	0	0	0	2
\% Buses	0	0	0	0	0	0	2.2		0	2.2	0	0	0	0	0	0	0	0	0	0	0.7

	Peak Hour Data North Peak Hour Begins at 14:15 Passenger Vehicles Heavy Vehicles Buses	

Traffic Data Specialists

735 Maryland St

Columbia, SC 29201
We Can't say we're the Best, but you Can!
File Name : Tillman Rd @ Tarboro Rd
Site Code :
Start Date: 12/05/2023
Page No : 5

	Tarboro Rd Southbound					Tillman Rd Westbound					Tarboro Rd Northbound					Tillman Rd Eastbound					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis From 16:00 to 17:45-Peak 1 of 1																					
Peak Hour fo	Entir	Inters	ection	Begins	at 17:0																
17:00	5	4	6	0	15		31	0	0	31	1	10	0	0	11	0	11	0	0	11	68
17:15	7	3	2	0	12		34	0	0	34	0	12	0	0	12	2	24	0	0	26	84
17:30	4	6	5	0				0	0	32	0	8	1	0	9	1	16	0	0	17	73
17:45	3	5	3	0		1		0	0	34	0	9	0	0	9	4	24	0	0	28	82
Total Volume	19	18	16	0		2		0	0	131	1	39	1	0	41	7	75	0	0	82	307
\% App. Total	35.8	34	30.2	0			58.5	0	0		2.4	95.1	2.4	0		8.5	91.5	0	0		
PHF	. 679	. 750	.667	. 000	. 883	000	. 949	. 000	00	. 963	. 250	. 813	. 250	. 000	. 854	438	781	. 000	. 000	732	. 914
Passenger Vehicles	19	18	16	0	53	2	124			126	1	39	1	0	41	6	73	0	0	79	299
\% Passenger Vehicles Heavy Vehicles	0	0	0	0	0	0				3	0	0	0	0	0	1	1	0	0	2	5
\% Heavy Vehicles	0	0	0	0	0	0				2.3	0	0	0	0	0	14.3	1.3	0	0	2.4	1.6
Buses	0	0	0	0	0	0	2			2	0	0	0	0	0	0	1	0	0	1	3
\% Buses	0	0	0	0	0	0	1.6		0	1.5	0	0	0	0	0	0	1.3	0	0	1.2	1.0

Site Code: Tillman Rd Station ID: EB \& WB Traffic Just East of Tarboro Rd

Ridgeland, SC
Latitude: 0' 0.0000 Undefined

Start	05-Dec-23	Eastbound		Hour Totals		Westbound		Hour Totals		Combined Totals	
Time	Tue	Morning	Afternoon								
12:00		0	20			2	13				
12:15		0	16			2	13				
12:30		0	9			3	14				
12:45		2	13	2	58	0	27	7	67	9	125
01:00		0	20			0	23				
01:15		1	18			1	18				
01:30		0	19			1	26				
01:45		0	17	1	74	0	21	2	88	3	162
02:00		0	16			1	24				
02:15		0	26			0	28				
02:30		0				0	28				
02:45		0		0	103	0	20	1	100	1	203
03:00		0	15			0	29				
03:15			18			0	27				
03:30						1	30				
03:45		0			74	0	23	1	109	1	183
04:00		0	- 21			0	33				
04:15		2	28			0	33				
04:30		4	29			0	43				
04:45		4	23		101	1	28	1	137	11	238
05:00		4	15			0	37				
05:15		7	31			5	36				
05:30		9	19			4	40				
05:45		12	26	32		7	40	16	153	48	244
06:00		16	15			7	41				
06:15		12	26		,	9	31				
06:30		18	12			7	26				
06:45		26	21	72	74	8	- 27	31	125	103	199
07:00		32	12			12	- 33				
07:15		41	14				-				
07:30		26	9				- 18				
07:45		39	7	138	42	16	- 19	61	78	199	120
08:00		31	8			21	13				
08:15		24	6			18	11	-			
08:30		23	5			16	14				
08:45		20	6	98	25	12	10	67	48	165	73
09:00		18	9			14	9				
09:15		16	3			10	12				
09:30		11	2			10	6				
09:45		14	3	59	17	9	7	43	34	102	51
10:00		9	6			14	5				
10:15		14	6			6	4				
10:30		18	2			11	5				
10:45		11	6	52	20	16	5	47	19	99	39
11:00		19	2			16	7				
11:15		12	1			15	3				
11:30		21	1			19	2				
11:45		20	0	72	4	14	2	64	14	136	18
Total		536	683			341	972			877	1655
Percent		44.0\%	56.0\%			26.0\%	74.0\%			34.6\%	65.4\%
Grand Total		536	683			341	972			877	1655
Percent		44.0\%	56.0\%			26.0\%	74.0\%			34.6\%	65.4\%
ADT		ADT 2,532		DT 2,532							

Site Code: Tarboro Rd Station ID: NB \& SB Traffic Just North of Tillman Rd

Ridgeland, SC
Latitude: 0' 0.0000 Undefined

Start	05-Dec-23	Southbound		Hour Totals		Northbound		Hour Totals		Combined Totals	
Time	Tue	Morning	Afternoon								
12:00		0	6			0	3				
12:15		0	11			0	2				
12:30		0	6			0	6				
12:45		1	5	1	28	0	8	0	19	1	47
01:00		1	6			1	4				
01:15		0	5			0	8				
01:30		0	12			1	8				
01:45		0	6	1	29	0	12	2	32	3	61
02:00		0	8			0	17				
02:15		0	18			0	25				
02:30		0				0	8				
02:45		0		0	75	0	11	0	61	0	136
03:00		0	11			0	8				
03:15		0	14			0	6				
03:30		1				0	9				
03:45		1			48	0	15	0	38	2	86
04:00		0	- 12			0	13				
04:15		1	16			0	8				
04:30		4	17			0	17				
04:45		2	14		59	0	12	0	50	7	109
05:00		1	15			0	15				
05:15		3	11			1	17				
05:30		1	15			1	18				
05:45		7	10	12		7	20	9	70	21	121
06:00		17	14			4	14				
06:15		15	7		,	2	16				
06:30		16	6			5	15				
06:45		12	7	60		3	- 14	14	59	74	93
07:00		18	11			6	$\bigcirc 12$				
07:15		19	4				-				
07:30		15	4								
07:45		38	6	90	25		- 5	81	30	171	55
08:00		29	0			15	2	\checkmark			
08:15		5	0			5	3	-			
08:30		8	0			9	2				
08:45		7	2	49	2	3	5	32	12	81	14
09:00		5	3			3	2				
09:15		8	0			3					
09:30		5	0			3	2				
09:45		4	0	22	3	2	3	11	13	33	16
10:00		1	1			4	1				
10:15		6	2			4	1				
10:30		3	0			5	1				
10:45		15	0	25	3	3	1	16	4	41	7
11:00		5	1			9	0				
11:15		6	2			2	0				
11:30		4	0			8	0				
11:45		3	0	18	3	6	1	25	1	43	4
Total		287	360			190	389			477	749
Percent		44.4\%	55.6\%			32.8\%	67.2\%			38.9\%	61.1\%
Grand Total		287	360			190	389			477	749
Percent		44.4\%	55.6\%			32.8\%	67.2\%			38.9\%	61.1\%

THOMAS HUTTON

APPENDIX B
SYNCHRO HCM 6 ANALYSIS
2023 EXISTING PEAK HOUR VOLUMES
$J-30596.0000$

January 2024

HCM 6th TWSC
1: Tarboro Road (SC 27-22) \& Tillman Road (SC 336)

Intersection													
Int Delay, s/veh	5.4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			\$			\uparrow			¢		
Traffic Vol, veh/h	38	117	0	0	50	0	0	28	0	21	56	26	
Future Vol, veh/h	38	117	0	0	50	0	0	28	0	21	56	26	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	\#	0	-	-	0	-	-	0		-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	79	79	9	79	79	79	79	79	79	79	79	79	
Heavy Vehicles, \%	0			0	8	0	0	0	0	0	0	4	
Mvmt Flow	48			0	63	0	0	35	0	27	71	33	
Major/Minor M	Major1			ajor2			Minor1			Minor2			
Conflicting Flow All	63	0	0			0	359	307	148	325	307	63	
Stage 1	-						244	244	-	63	63	-	
Stage 2	-	-					115	63	-	262	244	-	
Critical Hdwy	4.1	-					7.1	6.5	6.2	7.1	6.5	6.24	
Critical Hdwy Stg 1	-	-	-	-			6.1	5.5	-	6.1	5.5	-	
Critical Hdwy Stg 2	-	-	-	-			6.1	5.5	-	6.1	5.5	-	
Follow-up Hdwy	2.2	-	-	2.2				4	3.3	3.5	4	3.336	
Pot Cap-1 Maneuver	1553	-	-	1446				610	904	632	610	996	
Stage 1	-	-	-	-	-			708		953	846	-	
Stage 2	-	-	-	-	-			846		747	708	-	
Platoon blocked, \%		-	-		-								
Mov Cap-1 Maneuver	1553	-	-	1446	-	-	513			587	589	996	
Mov Cap-2 Maneuver	-	-	-	-	-	-	513	589		587	589	-	
Stage 1	-	-	-	-	-	-	738	684				-	
Stage 2	-	-	-	-	-	-	793	846		684			
Approach	EB			WB			NB						
HCM Control Delay, s	1.8			0			11.5			11.8			
HCM LOS							B			B			
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		589	1553	-	-	1446	-	-	656				
HCM Lane V/C Ratio		0.06	0.031	-	-	-	-	-	0.199				
HCM Control Delay (s)		11.5	7.4	0	-	0	-	-					
HCM Lane LOS		B	A	A	-	A	-	-	B				
HCM 95th \%tile Q(veh)		0.2	0.1	-	-	0	-	-	0.7				

HCM 6th TWSC
1: Tarboro Road (SC 27-22) \& Tillman Road (SC 336)

THOMAS HUTTON

J - 30596.0000

January 2024

Single Station Annualized Statistics - SCDOT_PORTABLES 000000270191

Site Name 27-0191 Site ID 000000270191 Description SC336 : S-29 (SMITHS XING) TO S- 116 (GREAT SWAMP ST)

Data Item	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Statistics Type	-	-	-	-	-	-	-	-	-	-
AADT	1800	1900	1950	2000	2000	2000	2200	2000	2000	2100
Single-Unit Truck AADT	-	-	-	-	-	-	101	84	63	66
Combo-Unit Truck AAD										
\% DHV SU Tr Cks										
\% DHV CU Tru ks										
\% Peak SU Trucks										
\% Peak CU Trucks										
K-Factor										
D-Factor										

Single Station Annualized Statistics - SCDOT_PORTABLES 000000270191

Single Station Annualized Statistics - SCDOT_PORTABLES 000000270191

Generated by Drakewell C2-Traffic on 11 December 2023 at 15:50:54

Single Station Annualized Statistics - SCDOT_PORTABLES 000000270242

Site Name 27-0242 Site ID 000000270242 Description S-29 : SC 336 (TILLMAN RD) TO S- 48 (CARTERS MILL RD), L- 48

Data Item	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Statistics Type	-	-	-	-	-	-	-	-	-	-
AADT	1100	1050	1150	1150	1150	1150	1900	1750	1250	1300
Single-Unit Truck AADT	-	-	-	-	-	-	67	49	67	69
Combo-Unit Truck AAD										
\% DHV SU TY kss										
\% DHV CU Truks										
\% Peak SU Trucks										
\% Peak CU Trucks										
K-Factor										
D-Factor										

Single Station Annualized Statistics - SCDOT_PORTABLES 000000270242

Single Station Annualized Statistics - SCDOT_PORTABLES 000000270242

THOMAS HUTTON

TRIP GENERATION CALCULATIONS

J - 30596.0000

January 2024

Nimmer Tract TIA

From ITE Trip Generation Manual, 11th Edition

Nimmer Tract TIA
From ITE Trip Generation Manual, 11th Edition
Vehicle Trips

Directi. Distribution: 50\% entering, 50\% exiting
Weekday

Weekday, Peak Hour of Adjacent St
One Hour Between 7 and 9am

Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6pm
Fitted Curve Equation: $\operatorname{Ln}(T)=0.60 X-3.93$
Directional Distribution: 59\% entering, 41% exiting
PM Peak Hour

Total Trips	Entering Trips	Exiting Trips
	86	51

Nimmer Tract TIA

From ITE Trip Generation Manual, 11th Edition

THOMAS HUTTON

APPENDIX E

SYNCHRO HCM 6 ANALYSIS 2035 NO-BUILD PEAK HOUR VOLUMES
$J-30596.0000$

January 2024

HCM 6th TWSC
1: Tarboro Road (SC 27-22) \& Tillman Road (SC 336)

HCM 6th TWSC
1: Tarboro Road (SC 27-22) \& Tillman Road (SC 336)

Intersection													
Int Delay, s/veh	3.6												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	\uparrow				\$			¢					¢
Traffic Vol, veh/h	8	88	0	2	151	0	1	46	1	22	21	19	
Future Vol, veh/h	8	88	0	2	151	0	1	46	1	22	21	19	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None		None		
Storage Length	-	-	-	-	-	-	-	-		-	-	-	
Veh in Median Storage,	\# -	0	-	-	0	-	-	0		-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91	
Heavy Vehicles, \%	14			0	4	0	0	0	0	0	0	0	
Mvmt Flow	9			2	166	0	1	51	1	24	23	21	
Major/Minor M	Major1			ajor2			Minor1			Minor2			
Conflicting Flow All	166	0	0	97		0	307	285	97		285	166	
Stage 1	-	-					115	115	-	170	170	-	
Stage 2	-	-					192	170	-	141	115	-	
Critical Hdwy	4.24	-					7.1	6.5	6.2	7.1	6.5	6.2	
Critical Hdwy Stg 1	-	-	-	-			6.1	5.5		6.1	5.5	-	
Critical Hdwy Stg 2	-	-	-						-	6.1	5.5	-	
Follow-up Hdwy 2	2.326	-	-	2.2				4	3.3	3.5	4	3.3	
Pot Cap-1 Maneuver	1342	-	-	1509				628	965	645	628	884	
Stage 1	-	-	-	-	-	-		804		837	762	-	
Stage 2	-	-	-	-	-			762			804	-	
Platoon blocked, \%		-	-		-								
Mov Cap-1 Maneuver	1342	-	-	1509	-		612				623	884	
Mov Cap-2 Maneuver	-	-	-	-	-	-	612	623		600	623	-	
Stage 1	-	-	-	-	-	-	889	798		831	7	-	
Stage 2	-	-	-	-	-		770	761		805			
Approach	EB			WB			NB						
HCM Control Delay, s	0.6			0.1			11.3			10.9			
HCM LOS							B			B			
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	BLn1				
Capacity (veh/h)		627	1342	-	-	1509	-	-	675				
HCM Lane V/C Ratio		0.084	0.007	-	-	0.001	-		0.101				
HCM Control Delay (s)		11.3	7.7	0	-	7.4	0	-					
HCM Lane LOS		B	A	A	-	A	A	-	B				
HCM 95th \%tile Q(veh)		0.3	0	-	-	0	-	-	0.3				

THOMAS HUTTON

APPENDIX F

SYNCHRO HCM 6 ANALYSIS
2035 BUILD OUT PEAK HOUR VOLUMES

J - 30596.0000

January 2024

HCM 6th TWSC
1: Tarboro Road (SC 27-22) \& Tillman Road (SC 336)

Intersection													
Int Delay, s/veh	148.1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			\uparrow			\$			\uparrow		
Traffic Vol, veh/h	64	165	29	0	68	39	10	110	0	139	294	87	
Future Vol, veh/h	64	165	29	0	68	39	10	110	0	139	294	87	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-		None	-	-	None	
Storage Length	-	-	-	-	-	-	-		-	-	-	-	
Veh in Median Storage,	\# -	0	-	-	0	-	-	0		-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	79	79	79	79	79	79	79	79	79	79	79	79	
Heavy Vehicles, \%	0			0	8	0	0	0	0	0	0	4	
Mvmt Flow	81			0	86	49	13	139	0	176	372	110	
Major/Minor M	Major1			ajor2			Minor1			Minor2			
Conflicting Flow All	135	0	0	246		0	742	525	228	570	519	111	
Stage 1	-	-					390	390	-	111	111	-	
Stage 2	-	-					352	135	-	459	408	-	
Critical Hdwy	4.1	-					7.1	6.5	6.2	7.1	6.5	6.24	
Critical Hdwy Stg 1	-	-	-	-			6.1	5.5		6.1	5.5	-	
Critical Hdwy Stg 2	-	-	-						-	6.1	5.5	-	
Follow-up Hdwy	2.2	-	-	2.2				4	3.3	3.5	4	3.336	
Pot Cap-1 Maneuver	1462	-	-	1332				460	816	435	464	937	
Stage 1	-	-	-	-	-			611		899	807	-	
Stage 2	-	-	-	-	-			789			600	-	
Platoon blocked, \%		-	-		-								
Mov Cap-1 Maneuver	1462	-	-	1332	-	-				311	434	937	
Mov Cap-2 Maneuver	-	-	-	-	-	-	77	431		311	434	-	
Stage 1	-	-	-	-	-	-	597	572		841		-	
Stage 2	-	-	-	-	-	-	318	789		415			
Approach	EB			WB			NB						
HCM Control Delay, s	1.9			0			27			279.1			
HCM LOS							D			F			
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		312	1462	-	-	1332	-	-	427				
HCM Lane V/C Ratio		0.487	0.055	-	-		-		1.542				
HCM Control Delay (s)		27	7.6	0	-	0	-	-	279.1				
HCM Lane LOS		D	A	A	-	A	-	-	F				
HCM 95th \%tile Q(veh)		2.5	0.2	-	-	0	-	-	35.8				

HCM 6th TWSC
1: Tarboro Road (SC 27-22) \& Tillman Road (SC 336)

HCM 6th TWSC
4: Tarboro Road (SC 27-22) \& Access 1

HCM 6th TWSC
4: Tarboro Road (SC 27-22) \& Access 1

HCM 6th TWSC
5: Tarboro Road (SC 27-22) \& Access 2

HCM 6th TWSC
5: Tarboro Road (SC 27-22) \& Access 2

HCM 6th TWSC
6: Nimmer Turf Road \& Access 3

HCM 6th TWSC
6: Nimmer Turf Road \& Access 3

HCM 6th TWSC
7: Tarboro Road (SC 27-22) \& Fire Station Access

HCM 6th TWSC
7: Tarboro Road (SC 27-22) \& Fire Station Access

THOMAS HUTTON

NAMICIMPACT ANALYSIS
NIMMER TRACT

APPENDIX G

SYNCHRO HCM 6 ANALYSIS 2035 BUILD OUT PEAK HOUR VOLUMES WITH IMPROVEMENTS
$J-30596.0000$

January 2024

		Intersection				
Int Delay, s/veh 3.9						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	${ }^{*}$	4	\uparrow		*	
Traffic Vol, veh/h	36	174	138	24	64	86
Future Vol, veh/h	36	174	138	24	64	86
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control F	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	150	-	-	-	0	-
Veh in Median Storage, \#	\# -	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, \%	0	3		0	33	0
Mvmt Flow		-	47		68	91
Major/Minor Majo			Or		Minor2	
Conflicting Flow All 173		0	-			
Stage 1		-	-			
Stage 2		-	-		21	
Critical Hdwy		-	-		.	0.2
Critical Hdwy Stg 1		-	-		53	-
Critical Hdwy Stg 2		-	-	-	5. 3	-
Follow-up Hdwy	2.2	-	-	-	3.797	
Pot Cap-1 Maneuver 14	1416	-	-	-	534	90
Stage 1	-	-	-	-	799	-
Stage 2	-	-	-	-	716	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver 1416		-	-	-	520	890
Mov Cap-2 Maneuver		-	-	-	520	-
Stage 1	-	-	-	-	777	-
Stage 2	-	-	-	-	716	-
Approach	EB		WB		SB	
HCM Control Delay, s			0		11.9	
HCM LOS		B				
Minor Lane/Major Mvmt		EBL EBT WBT WBR SBLn1				
Capacity (veh/h)		1416	-	-	-	683
HCM Lane V/C Ratio		0.027	-	-	-	0.234
HCM Control Delay (s)		7.6	-	-	-	11.9
HCM Lane LOS		A	-	-	-	B
HCM 95th \%tile Q(veh)		0.1	-	-		0.9

HCM 6th TWSC
4: Tarboro Road (SC 27-22) \& Access 1

HCM 6th TWSC
4: Tarboro Road (SC 27-22) \& Access 1

HCM 6th TWSC
5: Tarboro Road (SC 27-22) \& Access 2

HCM 6th TWSC
5: Tarboro Road (SC 27-22) \& Access 2

Tillman Road (SC 336) \& Tarb\& Oro Road (SC 27-22) Turn Lapo Improvement

HCM 6th TWSC
1: Tarboro Road (SC 27-22) \& Tillman Road (SC 336)

Intersection													
Int Delay, s/veh 1	132.7												
Movement	EBL EBT		EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	${ }^{7}$	f			\uparrow	「		¢	¢				
Traffic Vol, veh/h	64	165	29	0	68	39	10	110	0	139	294	87	
Future Vol, veh/h	64	165	29	0	68	39	10	110	0	139	294	87	
Conflicting Peds, \#hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None										
Storage Length	150	-	-	-	-	100	-	-		-	-	-	
Veh in Median Storage, \#	\# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	79	79	79	79	79	79	79	79	79	79	79	79	
Heavy Vehicles, \%	0			0	8	0	0	0	0	0	0	4	
Mvmt Flow	81			0	86	49	13	139	0	176	372	110	
Major/Minor M	Major1			ajor2			Minor1			Minor2			
Conflicting Flow All	135	0	0	246		0	742	525	228	545	494	86	
Stage 1	-	-					390	390	-	86	86	-	
Stage 2	-	-					352	135	-	459	408	-	
Critical Hdwy	4.1	-					7.1	6.5	6.2	7.1	6.5	6.24	
Critical Hdwy Stg 1	-	-	-	-			6.1	5.5	-	6.1	5.5	-	
Critical Hdwy Stg 2	-	-	-	-			6.1	5.5	-	6.1	5.5	-	
Follow-up Hdwy	2.2	-	-	2.2				4	3.3	3.5	4	3.336	
Pot Cap-1 Maneuver	1462	-	-	1332				460	816	452	479	967	
Stage 1	-	-	-	-	-			611		927	827	-	
Stage 2	-	-	-	-	-			789		586	600	-	
Platoon blocked, \%		-	-		-								
Mov Cap-1 Maneuver	1462	-	-	1332	-	-					453	967	
Mov Cap-2 Maneuver	-	-	-	-	-	-	90	435	$-$	326	453	-	
Stage 1	-	-	-	-	-	-	603	577				-	
Stage 2	-	-	-	-	-	-	326	789		420			
Approach	EB			WB			NB						
HCM Control Delay, s	1.9			0			24.9			249.8			
HCM LOS							C			F			
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		330	1462	-	-	1332	-	-	446				
HCM Lane V/C Ratio		0.46	0.055	-	-	-	-	-	1.476				
HCM Control Delay (s)		24.9	7.6	-	-	0	-	-	249.8				
HCM Lane LOS		C	A	-	-	A	-	-	F				
HCM 95th \%tile Q(veh)		2.3	0.2	-	-	0	-	-	33.8				

HCM 6th TWSC
1: Tarboro Road (SC 27-22) \& Tillman Road (SC 336)

Tillman Road (SC 336) \& Tarb\& Oro Road (SC 27-22) Traffic Sigpal Improvement

	4			\dagger				4	7		$\frac{1}{1}$	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\&			*			\$	
Traffic Volume (veh/h)	64	165	29	0	68	39	10	110	0	139	294	87
Future Volume (veh/h)	64	165	29	0	68	39	10	110	0	139	294	87
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1826	1900	1900	1781	1900	1900	1900	1900	1900	1900	1841
Adj Flow Rate, veh/h	81	209	37	0	86	49	13	139	0	176	372	110
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Percent Heavy Veh, \%	0	5	0	0	8	0	0	0	0	0	0	4
Cap, veh/h	179	294	47	0	271	155	117	841	0	279	475	130
Arrive On Green	0.25	25	0.25	0.00	0.25	0.25	0.47	0.47	0.00	0.47	0.47	0.47
Sat Flow, veh/h	294		185	0	1065	607	56	1802	0	370	1018	279
Grp Volume(v), veh/h		0	0	0	0	135	152	0	0	658	0	0
Grp Sat Flow(s),veh/h/ln			0	0	0	1672	1858	0	0	1666	0	0
Q Serve(g_s), s			0.0	0.0	0.0	2.8	0.0	0.0	0.0	11.7	0.0	0.0
Cycle Q Clear(g_c), s		0.0		0.0	0.0	2.8	2.0	0.0	0.0	14.8	0.0	0.0
Prop In Lane	0.25			0		0.36	0.09		0.00	0.27		0.17
Lane Grp Cap(c), veh/h	520	0			0	426	958	0	0	884	0	0
V/C Ratio(X)	0.63	0.00	0.00	0.00	0.00	0.32	0.16	0.00	0.00	0.74	0.00	0.00
Avail Cap(c_a), veh/h	780	0		0	0	698	1357	0	0	1258	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	0.00	0.00	0.00	00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	14.9	0.0	0.0	0.0)	13.0	6.7	0.0	0.0	9.9	0.0	0.0
Incr Delay (d2), s/veh	1.3	0.0	0.0	0.0		0.4	0.1	0.0	0.0	1.5	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	. 0	0.0	20	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/In	2.2	0.0	0.0	0.0	0.0			0.0	0.0	2.8	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	16.1	0.0	0.0	0.0	0.0	3.4	6.7	00	0.0	11.4	0.0	0.0
LnGrp LOS	B	A	A	A	A	B	A		A	B	A	A
Approach Vol, veh/h		327			135						658	
Approach Delay, s/veh		16.1			13.4						11.4	
Approach LOS		B			B			A			B	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		26.1		17.0		26.1		17.0				
Change Period (Y+Rc), s		6.0		6.0		6.0		6.0				
Max Green Setting (Gmax), s		30.0		18.0		30.0		18.0				
Max Q Clear Time (g_c+11), s		4.0		10.0		16.8		4.8				
Green Ext Time (p_c), s		0.7		1.0		3.3		0.4				
Intersection Summary												
HCM 6th Ctrl Delay			12.3									
HCM 6th LOS			B									

Tillman Road (SC 336) \& Tarb\& 6 ro Road (SC 27-22) Roundabpat Improvement

Intersection				
Intersection Delay, s/veh	8.5			
Intersection LOS	A			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	327	135	152	658
Demand Flow Rate, veh/h	337	142	152	662
Vehicles Circulating, veh/h	548	233	476	106
Vehicles Exiting, veh/h	220	395	409	269
Ped Vol Crossing Leg, \#/h	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	10.3	4.7	6.1	8.9
Approach LOS	8	A	A	A
Lane			Left	Left
Designated Moves			LTR	LTR
Assumed Moves			LTR	LTR
RT Channelized				
Lane Util	1.000		1.000	1.000
Follow-Up Headway, s	2.609		2.609	2.609
Critical Headway, s	4.976		4.976	4.976
Entry Flow, veh/h	337		152	662
Cap Entry Lane, veh/h	789		849	1238
Entry HV Adj Factor	0.969		1.000	0.994
Flow Entry, veh/h	327		152	658
Cap Entry, veh/h	765		849	1231
VIC Ratio	0.427		79	0.535
Control Delay, s/veh	10.3		,	8.9
LOS	B			A
95th \%tile Queue, veh	2		1	3

Intersection				
Intersection Delay, s/veh	7.8			
Intersection LOS	A			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	225	352	385	379
Demand Flow Rate, veh/h	241	360	385	379
Vehicles Circulating, veh/h	316	480	332	250
Vehicles Exiting, veh/h	313	237	225	590
Ped Vol Crossing Leg, \#/h	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	6.3	9.7	8.0	7.0
Approach LOS	A	A	A	A
Lane			Left	Left
Designated Moves			LTR	LTR
Assumed Moves			LTR	LTR
RT Channelized				
Lane Util	1.000		1.000	1.000
Follow-Up Headway, s	2.609		2.609	2.609
Critical Headway, s	4.976		4.976	4.976
Entry Flow, veh/h	241		385	379
Cap Entry Lane, veh/h	1000		984	1069
Entry HV Adj Factor	0.935		1.000	1.000
Flow Entry, veh/h	225		385	379
Cap Entry, veh/h	935		984	1069
V/C Ratio	0.241		91	0.354
Control Delay, s/veh	6.3			7.0
LOS	A		A	A
95th \%tile Queue, veh	1		2	2

THOMAS HUTTON

APPENDIX H
AUXILIARY TURN LANE ANALYSIS
J - 30596.0000

January 2024

Tillman Road (SC 336) \& Tarb\&o Road (SC 27-22)

Tillman Road (SC 336) \& Tarboro Road (SC 27-22) eastbound

Instructions:

1. The family of curves represents the percent of left turns in advancing volume $\left(V_{A}\right)$. The designer should locate the curve for the actual percentage of left turns. When this is not an even increment of 5, the designer should estimate where the curve lies.
2. Read V_{A} and V_{O} into the chart and locate the intersection of the two volumes.
3. Note the location of the point in \#2 relative to the line in \#1. If the point is to the right of the line, then a left-turn lane is warranted. If the point is to the left of the line, then a leftturn lane is not warranted based on traffic volumes.

Tillman Road (SC 336) \& Tarboro Road (SC 27-22) eastbound

Note: For highways with a design speed below 50 mas pen with a DHV <300 and where right turns >40, an adjustment should be used. To read the rertical axis of the chart, subtract 20 from the actual number of right turns.

AM:
Speed $=55$
DHV = 258
$\mathrm{V}_{\mathrm{R}}=29$

PM:
Speed $=55$
DHV $=204$
$\mathrm{V}_{\mathrm{R}}=20$

Tillman Road (SC 336) \& Tarboro Road (SC 27-22) westbound

Note: For highways with a design speed below 50 mas pen with a DHV < 300 and where right turns > 40, an adjustment should be used. To read the rertical axis of the chart, subtract 20 from the actual number of right turns.

AM:
Speed $=55$
DHV = 107
$\mathrm{V}_{\mathrm{R}}=39$

PM:
Speed $=55$
DHV $=319$
$V_{R}=135$

Tillman Road (SC 336) \& 8 Mmer Turf Road

Tillman Road (SC 336) \& Nimmer Turf Road westbound

Note: For highways with a design speed below 50 mas pen with a DHV < 300 and where right turns >40, an adjustment should be used. To read the rertical axis of the chart, subtract 20 from the actual number of right turns.

AM:
Speed = 55
DHV = 162
$V_{R}=24$

PM:
Speed $=55$
DHV $=255$
$V_{R}=78$

Tillman Road (SC 336) \& Nimmer Turf Road eastbound

Instructions:

1. The family of curves represents the percent of left turns in advancing volume $\left(V_{A}\right)$. The designer should locate the curve for the actual percentage of left turns. When this is not an even increment of 5, the designer should estimate where the curve lies.
2. Read V_{A} and V_{O} into the chart and locate the intersection of the two volumes.
3. Note the location of the point in \#2 relative to the line in \#1. If the point is to the right of the line, then a left-turn lane is warranted. If the point is to the left of the line, then a leftturn lane is not warranted based on traffic volumes.

Tarboro Road (SC 27-22) \& Access 1

Tarboro Road (SC 27-22) \& Access 1 northbound

Instructions:

1. The family of curves represents the percent of left turns in advancing volume $\left(V_{A}\right)$. The designer should locate the curve for the actual percentage of left turns. When this is not an even increment of 5, the designer should estimate where the curve lies.
2. Read V_{A} and V_{O} into the chart and locate the intersection of the two volumes.
3. Note the location of the point in \#2 relative to the line in \#1. If the point is to the right of the line, then a left-turn lane is warranted. If the point is to the left of the line, then a leftturn lane is not warranted based on traffic volumes.

Tarboro Road (SC 27-22) \& Access 2

Tarboro Road (SC 27-22) \& Access 2 northbound

Instructions:

1. The family of curves represents the percent of left turns in advancing volume $\left(V_{A}\right)$. The designer should locate the curve for the actual percentage of left turns. When this is not an even increment of 5, the designer should estimate where the curve lies.
2. Read V_{A} and V_{O} into the chart and locate the intersection of the two volumes.
3. Note the location of the point in \#2 relative to the line in \#1. If the point is to the right of the line, then a left-turn lane is warranted. If the point is to the left of the line, then a leftturn lane is not warranted based on traffic volumes.

Tarboro Road (SC 27-22) \& Ef Station Access

Tarboro Road (SC 27-22) \& Fire Station Access northbound

Instructions:

1. The family of curves represents the percent of left turns in advancing volume $\left(V_{A}\right)$. The designer should locate the curve for the actual percentage of left turns. When this is not an even increment of 5, the designer should estimate where the curve lies.
2. Read V_{A} and V_{O} into the chart and locate the intersection of the two volumes.
3. Note the location of the point in \#2 relative to the line in \#1. If the point is to the right of the line, then a left-turn lane is warranted. If the point is to the left of the line, then a leftturn lane is not warranted based on traffic volumes.

Nimmer Turf Road \& Access 3

Nimmer Turf Road \& Access 3 northbound

Note: For highways with a design speed below 50 mas pen with a DHV <300 and where right turns >40, an adjustment should be used. To read the rertical axis of the chart, subtract 20 from the actual number of right turns.

AM:
Speed = 25
DHV = 60
$V_{R}=48-20=29$

PM:
Speed $=25$
DHV = 179
$V_{R}=168-20=149$

Nimmer Turf Road \& Access 3 southbound

2. Read V_{A} and V_{O} into the chart and locate the intersection of the two volumes.
3. Note the location of the point in \#2 relative to the line in \#1. If the point is to the right of the line, then a left-turn lane is warranted. If the point is to the left of the line, then a leftturn lane is not warranted based on traffic volumes.

\square
 THOMAS HUTTON

APPENDIX I

SIGNAL WARRANT ANALYSIS

J - 30596.0000

January 2024

Signal Warrant Analysis
 Tarboro Road (SC 27-22) Tillman Road (SC 336)

Time	NB Volumes Tarboro Road (SC 27-22)	SB Volumes Tarboro Road (SC 27-22)	Major Street Volume Tarboro Road (SC 27-22)	Minor Street Volume Tillman Road (SC 336)	Warrant 1 (8-hour volumes) Condition A or B 70\% Volume Thresholds		Warrant 1 (8-hour volumes) Condition A or B 100\% Volume Thresholds	
					Condition A	Conditon B	Condition A	Condition B
					major>350 and	major>525 and	major>500 and	major>750 and
					minor>105	minor>53	minor>150	minor>75
6-7 AM	103	147	250	93	NO	NO	NO	NO
7-8 AM	207	366	573	146	YES	YES	NO	NO
8-9 AM	140	258		137	YES	NO	NO	NO
9-10AM	119	169	48	107	NO	NO	NO	NO
10-11AM	146	209	355	132	YES	NO	NO	NO
11AM-12PM	170	242	412	153	YES	NO	NO	NO
12-1 PM	222	318	540		YES	YES	YES	NO
1-2 PM	191	273	464		YES	NO	NO	NO
2-3 PM	196	339	535	185	YES	YES	YES	NO
3-4 PM	237	384	621	234		YES	YES	NO
4-5 PM	241	404	645	254	MES	YES	YES	NO
5-6 PM	261	393	654	271	ES	YES	YES	NO
6-7 PM	204	292	496	184	YBS	NO	NO	NO
						-		
	Number of Hours meeting warrants				11		5	0
	Hours needed to meet warrant				8	8	8	8
		Warrant Met?			YES	NO	NO	NO

*Build Out
One Lane Major Street, One Lane Minor Street

PM:

$12-1=540(201)$ $3-4=621$ (234) $4-5=645(254)$ $5-6=654$ (271)

MINOR
STREET HIGHERVOLUME APPROACH VPH

Figure 4C-1. Warrant 2, Four-Hour Vehicular Volume

*Note: 115 vph appli as the wer threshold volume for a minor-street approach with oore hes and 80 vph applies as the lower threshold vorume fo tornor-street approach with one lane.

Figure 4C-2. Warrant 2, Four-Ho Vehicy' (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR OV 10 MPA ON MAJOR STREET)

PM:
$12-1=540(201)$
$3-4=621$ (234)
$4-5=645(254)$
$5-6=654$ (271)

MAJOR STREET-TOTAL OF BOTH APPROACHESVEHICLES PER HOUR (VPH)
*Note: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.

Nimmer SPECIAL DISTRICT

EXHIBIT E PRELIMINARY PLAT

J - 30596.0000
May 2024

